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Abstract—An increasing number of cellular congestion control
algorithms (CCAs) are becoming reliant on measurements of
the delivery rate observed at the receiver. Accordingly, early
detection of changes in the receiver’s rate would improve the
performance of such algorithms. In addition to CCAs, faster
detection of rate can also benefit available throughput estimation
tools that rely on rate measurements. The upper layers of a
cellular receiver could achieve faster rate detection through rate
measurements over short time intervals. However, for cellular
receivers, upper-layer rate measurements over short time scales
produce unreliable results due to the effect of underlying lower
layer mechanisms such as scheduling and retransmissions. In
this paper, we introduce a Kalman filter based rate estimation
approach that reduces the variability observed in short time
scale receiver rate measurements and allows faster rate change
detection. We also integrate an adaptive mechanism to facilitate
online estimations in a network with an unknown or changing
characteristic.

Index Terms—Cellular, Rate estimation, Kalman filter

I. INTRODUCTION

The basic form of rate calculation involves adding up the

amount of data received and dividing it by the time interval it

took to receive the given amount of data. However, different

rate estimation approaches diverge from each other based

on where the rate is estimated and the time interval for

which the rate is estimated. Some algorithms also apply some

processing and aggregation mechanisms over one or more

rate samples to infer a stable rate that is immune to some

of the temporary variations experienced in networks [5] [9].

In cellular networks, the available rate to a specific user is,

however, rarely constant and varies depending on various

factors. The rate variability has made a timely estimate of the

receiver’s rate an important input for properly regulating how

the packets are sent in recent congestion control algorithms.

Rate estimates computed over longer intervals might not

give accurate estimates of the current state of a cellular

network. Thus, it can be argued that in cellular networks,

estimations done over short intervals are preferable to quickly

detect the available rate and adjust sending rates accordingly.

However, upper-layer reception rate calculations done over a

short time interval can be vulnerable to various temporary

lower layer mechanisms that could result in bursts or starva-

tions. Examples of such lower layer mechanisms are eNodeB

scheduling and in-order delivery of Radio Link Control (RLC)

data. Therefore, a reception rate obtained using short time

intervals can experience large variations even when the system

finds itself in a relatively stable condition.

In this paper, we propose an approach to reduce the impact

of lower layer mechanisms on the rate measured by upper

protocol layers over short intervals. The approach applies a

Kalman filter to the short interval measurements and enables

faster detection of changes in the delivery rate. The Kalman

filter and its nonlinear variants have been used in a number of

cases related to cellular and wireless communication. Some

of the previous uses of the Kalman filter include mobility

tracking [16] [12] and load estimation [4]. To the best of our

knowledge, this is the first approach to use the Kalman filter

for making fast and accurate rate estimations from short time-

scale measurements in cellular receivers.

The rest of the paper is organised as follows: Section II

reviews recent rate estimation approaches. Section III presents

the rate estimation issues considered by this paper. Section

IV describes the proposed estimation approach. Results of

the proposed estimation are presented in Section VI, and we

conclude in Section VII.

II. BACKGROUND AND RELATED WORK

Estimating a receiver’s rate has become an important com-

ponent of a number of recent transport layer cellular con-

gestion control algorithms (CCAs). As such, these types of

CCAs can be viewed as entities performing micro-monitoring

to enact changes that enable them to get better service from

the underlying network. The estimation approaches differ,

among others, in where they are placed and the time scale

used for rate computation. Rate estimation algorithms can be

implemented on the sender’s side or on the receiver’s side of

the communication. Sender side implementations use packet

acknowledgements to make estimations about the delivery of

packets at the receiver [6] [7]. However, to obtain more reliable

sender side receiver rate estimations, provisions for dealing

with issues such as data-link asymmetry and acknowledgement

(ACK) aggregation are needed [6]. On the other hand, receiver

side rate estimations allow a more accurate rate computation,

since they have immediate access to the actual count of data

being delivered instead of indirectly relying on the response

acknowledgements [15] [17].

In addition to the placement of the rate estimation algorithm,

the time scale used to compute the rate estimation also varies
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Fig. 1: Rates calculated over 200 ms

among the algorithms. Decisions on the time scale used for

measuring the rate at a receiver is typically justified through

theoretical [7] [17] or empirical reasoning [5] [13]. The time

scale for calculating the receiver rate can be dynamically

changing or statically set.

There are a number of algorithms where the rate calculation

interval is related to the round trip time (RTT). The delivery

rate estimation employed by the Bottleneck Bandwidth and

Round-trip propagation time (BBR) algorithm [5] [6] takes

samples of the delivery rate on an interval that lasts between

the the ACK reception time just before the transmission of a

data packet and the reception of its acknowledgement. There-

fore, the granularity of the rate computation varies depend-

ing on the round trip time (RTT). Client Driven Bandwidth

Estimation (CDBE) [17] is another algorithm with dynamic

rate computation intervals. The algorithm aggregates multiple

short interval rate estimations over a longer time window.

The longer interval is set to a single RTT, and each long

interval comprises five short intervals. Performance-oriented

Congestion Control (PCC) [7] extracts the rate from ACKs

received over a monitoring interval (MI), which is at least a

value between 1.7 and 2.2 times the RTT.

PropRate [9] calculates an estimate of the receiver’s rate at

the sender. However, unlike BBR and PCC, the rate compu-

tation interval is not dependent on the RTT. The estimation

is done by taking an exponentially weighted moving average

(EWMA) of instantaneous rates over a time period. The time

period is set to the duration of 50 consecutive packet bursts

with a maximum limit at 500 ms. On the other hand, Sprout

[15] sets a static tick period of 20 ms to calculate the rate to

be used for updating a probability distribution of rates.

It should be noted that this work is not an alternative

estimation mechanism to the above approaches. In fact, it

is more of a complementary approach that could improve

the rate samples collected by the above algorithms. This can

particularly be useful for scenarios where the time scale over

which algorithms collect a rate sample is dependent on the

RTT, and the connection happens to be between nodes in

close proximity to each other. In such cases, this approach

could help in avoiding adverse effects from aggregations that

use maximum filter or statically defined weight parameters.

Some algorithms might choose to use longer intervals to avoid

Fig. 2: Rates calculated over 20 ms

the high variations experienced in short time scales. For such

cases, this approach enables the use of short intervals and

allows a faster detection of a change in the packet delivery rate

resulting from a change in cellular network conditions. An-

other application area of fast rate measurement techniques is

in network measurement and monitoring tools. Fast estimation

techniques can reduce the time required to saturate the network

to obtain a reliable measurement. Real time monitoring of

throughput to observe the immediate effect of changes in the

network condition is another practical application that could

integrate fast rate estimation techniques.

III. PROBLEMS WITH UPPER LAYER RATE ESTIMATION

The use of longer time scales for computing the receive

rate of a cellular node will make the detection of the current

capacity take longer. This is because a number of the packets

used in the calculation of the rate were received in a period

preceding the change. Figure 1 and 2 show the rates computed

for two different time scales from the same trace collected

using the setup described in Section V. Figure 1 shows the

upper-layer receive rate of a saturating UDP flow that lasts

about 15 seconds. A second UDP flow was launched at the

same time as the first one and ended 5 seconds later. The rate

is calculated at every 200 ms interval. It can be seen that there

is a delay between the time when flow2 ends and flow1 detects

the new higher rate.

Figure 2 shows that upper-layer rate measurements per-

formed over very short time intervals (20 ms) are extremely

variable. This variability is caused by the effect of lower layer

mechanisms such as eNodeB scheduling and in-order delivery.

Therefore, it is difficult to obtain a clear understanding of the

steady rate at the receiver. This variability can get worse if

measurements are done over an ever shorter time interval. The

CDF plots in Figure 3 show the different levels of variability

experienced when different measurement time scales are ap-

plied on the arrival trace used in Figures 1 and 2. It can be seen

that the proportion of extremely high or low rates increases as

the time scale of measurement decreases.

IV. SYSTEM DESCRIPTION

A. System and measurement models

In this section we describe the standard Kalman filter

based approach used to minimise the high level of variations
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Fig. 3: ECDF of rates for different sampling time scales

observed in rate measurements over short time scales. The

Kalman filter [8], is an optimal estimator for linear dynamical

systems with state transition is given by Equation (1), and

the observation of the state is expressed as in Equation (2).

We chose the standard Kalman filter because it is: (1) easy

to implement and understand; (2) relatively low cost compu-

tations allowing online adjustments of sending behaviour, if

used in an application or a CCA; and (3) adaptable to different

measurement procedures and network conditions by adaptively

changing the parameters of the filter online.

xk = Axk−1 +Buk + wk (1)

yk = Cxk + vk (2)

In Equations (1) and (2), xk and xk−1 are Nx dimensional

vectors representing the state of the system at times k and

k− 1, respectively, with transition matrix A. The contribution

of the control vector, uk, to the next state of the system

is determined by the control-input matrix, B. The process

noise, wk, characterizes the uncertainty in the state model. The

measured state, yk, is the observable quality of the system. The

translation between the state of interest and the observable

state is given by C. vk is the measurement noise, which

quantifies the uncertainty in the measurement process.

x−
k = Axk−1 +Buk (3)

p−k = Apk−1A
T +Q (4)

Given Equations (1) and (2), the Kalman filter estimation

works by acquiring a new a priori state estimate (x−
k in

Equation (3)) using the state transition model. Then the a priori

estimate is corrected using the measurement value to obtain an

a posteriori estimate (xk in Equation (6)). The uncertainty in

the a priori estimate (p−k ) is calculated in Equation (4) using

the covariance of the process noise (Q). The uncertainty is

then updated for the a posteriori estimate (pk) in Equation

(7). The Kalman gain (K), which is calculated by applying the

measurement noise covariance (R), determines the contribution

of the measurement to the a posteriori estimate.

K = p−k C(Cp−k C
T +R)−1 (5)

xk = Ax−
k +K(yk − CAx−

k ) (6)

pk = p−k −KCp−k (7)

In current cellular networks, the achieved receive rate is

determined by the signal quality of the channel and the

amount of load in the network. In addition, the sending rate

at the source will have to be greater than the available rate

determined by the channel quality and network load. Thus, the

above three quantities are the control of the system. Having

full knowledge of the change in the above quantities would

allow better tracking of the dynamics of the rate. However,

since it is difficult to determine the amount of load in the

network from a cellular receiver, the contribution of the load

variation can be included as an uncertainty affecting the state

transition, i.e., process noise.

In 4G/LTE networks, the change in the receive rate resulting

from change in the channel quality is dependent on the

type of scheduling employed by the eNodeB. However, it

has been shown in [3] that when a network is loaded most

eNodeB schedulers result in a sigmoid-like relation between

the achieved rate and the channel quality. Since we are only

considering a node at a static position, the change in signal

quality resulting from propagation loss is relatively low. Addi-

tionally, we assume that the scale of the external interference is

limited to a linear region of the scheduler dependent sigmoid-

like relation. Thus, we opt for a simplified and generalised

model that includes the rate variations resulting from channel

quality in the uncertainty of the state transition model.

Based on the above conditions Equations (1) and (2) can be

simplified as:

rk = rk−1 + wk (8)

mk = rk + vk (9)

Where rk is the steady rate at time k and mk is the measured

rate at time k.

B. Parameter selection

It is often difficult to have knowledge of the process and

measurement noise and the corresponding covariance matrices

Q and R. Furthermore, the values of Q and R might not

stay steady, changing constantly throughout the measurement

duration. In the particular case studied in this paper, the

process and noise parameters are unknown and also expected

to vary in time.

The value of Q will vary depending on the level of load and

signal quality variation in the network. Since the scale of load

and signal quality variability could differ between different

time instances, the value of Q must be adjusted to reflect the

change in variability. In addition, the value of R is dependent
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Fig. 4: Long time-scale measurements vs. offline filtered

output

Fig. 5: Unfiltered short time-scale measurements vs. offline

filtered output

on the variability produced by the measurement process. This

variability can depend on the type of scheduler, the time scale

of rate measurement and the amount of packets available in the

queue, among others. For instance, measurement over shorter

time scales are more likely to be affected by lower layer

mechanisms such as scheduling and retransmissions.

Measurement noise characteristics for Kalman filtering ap-

plied to device based measurement systems can usually be

acquired from device specification and properties. Process

noise is usually more challenging to characterise. Various

approaches are applied by different applications to deal with

unknown or variable noise parameters. These approaches range

from trial-and-error (state space search) to more systematic

Bayesian, maximum likelihood, correlation and covariance

matching approaches [11].

We apply the noise parameter estimation mechanism pre-

sented in [1] to track and update the values of Q and R.

The measurement noise covariance matrix R is estimated

using the residual of the state estimation. The residual, ε, is

the difference between the actual and estimated measurement

values as given in Equation (10). Then, an estimate of R is

obtained using Equation (11) .

εk = zk − Cxk (10)

Rk = αRk−1 + (1− α)(εkε
T
k + Cp−k C

T ) (11)

The process noise covariance Q is obtained using the inno-
vation of the system. The innovation, d, can be computed using

Equation (12) as the difference between the measurement and

the projection of the a priori estimate onto the measurement

plane. Then, an estimate of Q can be obtained by using the

innovation as shown in Equation (13). Detailed description of

the derivation of the equations for Q and R can be found in

[1] and [14].

dk = zk − Cx−
k (12)

Qk = αQk−1 + (1− α)(Kkdkd
T
kK

T ) (13)

V. TEST SETUP

The estimation approach is tested on data collected using the

MONROE [2] platform. The MONROE platform consists of a

collection of mobile devices distributed over several countries

for measurement and experimentation on mobile broadband

networks.The rate computations presented in this paper use

data collected from sending UDP datagrams at a very high

rate from a local server to a MONROE cellular receiver node.

The sender is a UDP application on a Linux version 4.4

machine that is connected to a 100 Mbps Ethernet connection.

The application generates datagrams at a specified constant

rate. The sending rate is set much higher than the cellular

link capacity, to ensure there is always a queue in the cellular

access network. The receiver is an application running inside a

container on the MONROE node. A Linux operating system is

installed on the node that is stationary to limit signal quality

variations resulting from node mobility. The arrival time of

each UDP datagram is recorded. The rate is calculated by

summing the size of all received datagrams within an interval,

and dividing the result by the selected time interval.

VI. RESULTS

A. Offline parameter search

The noise parameters used in Figures 4 and 5 (Q=3, R=49)

are obtained by exploring the search space on the same

trace used for Figures 1 and 2. The filtered output for the

measurements are shown against the long and short time scale

measurements given in Figures 4 and 5, respectively.

The results shown in Figure 4 show a Kalman-filtered 20-

ms rate estimates along with 200-ms rate measurements. It

can be seen that the filtered short time-scale measurements

almost always produce rate estimates that are close to the

measurements obtained using the longer interval. However,

the longer interval measurements are almost always lagging

behind the filtered estimates. This shows that the filtered output

removes the dragging effect imposed on long interval estimates

by the inclusion of packet data that is much earlier than the

time of interest.

The close-up image in Figure 4 shows the improvement in

detecting the new receive rate when the flow to a second node

is ended as shown in Figure 1. It can be seen that the filtered
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(a) Test 1 (b) Test 2 (c) Test 3

Fig. 6: Filtered short interval rates vs. raw short interval rates for different tests

Fig. 7: Adaptive estimation compared to basic offline

estimation

short interval approach is able to detect the available capacity

much earlier than rates computed over the long interval.

In addition, Figure 5 shows that the filtered output is

significantly less variable than the original measurements over

short time interval. It can be seen that the filtered output is

able to maintain the general progression of the short time-scale

measurements while removing the extreme variations present

in the original measurements.

B. Adaptive Estimation

The adaptive mechanism results in the filtered outputs given

in Figure 6 (cf. the unfiltered short time-scale measurements)

when applied to measurements done at three different time

instances, where each instance is at a different location within

the university building. It can be seen that the adaptive mech-

anism is able to track the receivers rate even with different

unfiltered measurement sequences supplied as an input. In

addition, Figure 7 shows that the adaptive mechanism is able

to achieve similar performance to the offline approach. The

value of α, which determines how fast Q and R, is updated

is set to 0.7. Higher α updates the noise parameters slowly,

and by varying α it is possible to get faster estimates but at

the cost of higher variability.

Another advantage of the adaptive mechanism is that it can

produce a good estimate from measurements over different

time scales with relatively small and predictable changes to the

filter parameter α. This is shown in Figure 8 where adaptively

filtered measurements over 5 and 20 ms are compared. It can

be seen that it is possible to get a good rate estimate even

Fig. 8: Adaptive estimation at different time scales

Fig. 9: Filtered estimations vs. unfiltered measurements using

an intermediate time scale

(a) 20 ms (b) 5 ms

Fig. 10: Evolution of noise parameters for different measure-

ment time scales

for extremely short rate sampling durations by making slight

modification to the speed of update. Modifying α for different

time scales is easier and more predictable than offline search

for acceptable values of Q and R over the entire search space.
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Figure 10 shows how Q and R are automatically updated

for different measurement time scales. As expected, as the

time scale of measurement decreases the measurement noise

covariance R increases noticeably.

Applying the adaptive mechanism can also produce less

variable results compared to raw measurements done over

intermediate length intervals (e.g. 50 ms). As shown in Figure

9, 5 ms estimations experience less spikes and dips than the

50 ms measurements while achieving similar accuracy to the

unfiltered measurements.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented a rate estimation approach

for cellular receivers that applies the Kalman filter on short

time-scale measurements to detect rate changes faster than

long interval measurements. The approach is also able to

reduce the extreme rate variations observed in short time-scale

measurements. It is also shown that an adaptive estimation

mechanism can be used to get estimates of the unknown filter

noise parameters. Rate estimations from measurements over

short intervals can facilitate faster reaction to network changes

by algorithms that rely on receiver rate estimation to control

the manner they send packets out at the sender. The approach

could also benefit available bandwidth estimation tools that

rely on rate measurements by allowing fast estimations that

avoid saturating the network for longer intervals.

Future plans include further improvements on the speed and

accuracy of the proposed approach. Such improvements can be

achieved by using a system model that leverages cross-layer

information, such as channel quality. A system dynamics based

on the rate allocation scheme of a selected scheduler is one

possible alternative for a model using cross-layer information.

Further evaluations of the current online adaptation mechanism

for non-stationary scenarios could also be performed to see if

modifications are required for comprehensive use. Addition-

ally, other online parameter adaptation mechanisms can also

be evaluated to explore for a solution that is a better fit for

the specific problem of cellular receiver rate estimation.

Although the approach shows promising results, the eval-

uations carried out so far are limited to traces collected on

stationary receivers connected to a real operator network. We

still plan to carry out wide scale measurements over multiple

operator networks to further verify the applicability of the pro-

posed approach. However, the network conditions that result

in a specific set of rate measurements are not fully observable

in a commercial operator’s network. Therefore, a more definite

evaluation of the approach in an environment that allows full

control of the number of nodes in the network and the channel

quality of each node will be performed to further verify the

applicability of the proposed approach. The evaluations will

also include mobility scenarios and other factors that affect

signal propagation. Evaluating the performance of algorithms

such as Sprout [15], CDBE [17] and CQIC [10] that could

benefit from integrating the proposed estimation approach is

also among the planned future tasks.
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[2] Ozgü Alay et al. Monroe: Measuring mobile broadband networks in
Europe. In Proceedings of the IRTF & ISOC Workshop on Research
and Applications of Internet Measurements (RAIM), 2015.

[3] Y. Benchaabene, N. Boujnah, and F. Zarai. Performance comparison
of packet scheduling algorithms for voice over IP in LTE cellular
network. In 2016 4th International Conference on Control Engineering
Information Technology (CEIT), pages 1–7, Dec 2016.

[4] G. Bianchi and I. Tinnirello. Kalman filter estimation of the number of
competing terminals in an IEEE 802.11 network. In IEEE INFOCOM
2003 (IEEE Cat. No.03CH37428), volume 2, pages 844–852 vol.2,
March 2003.

[5] Neal Cardwell et al. BBR: Congestion-Based Congestion Control.
Queue, 14(5):50:20–50:53, October 2016.

[6] Yuchung Cheng et al. Delivery rate estimation. Internet-Draft draft-
cheng-iccrg-delivery-rate-estimation-00, IETF Secretariat, July 2017.

[7] Mo Dong et al. PCC: Re-architecting Congestion Control for Consistent
High Performance. In NSDI, volume 1, page 2, 2015.

[8] Rudolf Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering (ASME), 82D:35–45, 01 1960.

[9] Wai Kay Leong et al. TCP congestion control beyond bandwidth-
delay product for mobile cellular networks. In Proceedings of the
13th International Conference on emerging Networking EXperiments
and Technologies, pages 167–179. ACM, 2017.

[10] Feng Lu et al. CQIC: Revisiting Cross-Layer Congestion Control for
Cellular Networks.

[11] R. K. Mehra. Approaches to adaptive filtering. In 1970 IEEE Symposium
on Adaptive Processes (9th) Decision and Control, pages 141–141, Dec
1970.

[12] L. Mihaylova et al. Mobility tracking in cellular networks using particle
filtering. IEEE Transactions on Wireless Communications, 6(10):3589–
3599, October 2007.

[13] Shinik Park et al. ExLL: An Extremely Low-latency Congestion Control
for Mobile Cellular Networks.

[14] Jinling Wang. Stochastic modeling for real-time kinematic
GPS/GLONASS positioning. Navigation, 46:297–305, 12 1999.

[15] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic
Forecasts Achieve High Throughput and Low Delay over Cellular
Networks. In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, nsdi’13, pages 459–472, Berkeley,
CA, USA, 2013. USENIX Association.

[16] Zainab R. Zaidi and Brian L. Mark. Real-time mobility tracking
algorithms for cellular networks based on kalman filtering. IEEE
Transactions on Mobile Computing, 4(2):195–208, March 2005.

[17] Z. Zhong et al. CDBE: A cooperative way to improve end-to-end conges-
tion control in mobile network. In 2018 14th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), pages 216–223, Oct 2018.

208


