
TNT, Watch me Explode:
A Light in the Dark for Revealing MPLS Tunnels

Yves Vanaubel∗, Jean-Romain Luttringer‡, Pascal Mérindol‡, Jean-Jacques Pansiot‡, Benoit Donnet∗
∗ Montefiore Institute, Université de Liège – Belgium

‡ Icube, Université de Strasbourg – France

Abstract—Internet topology discovery aims at analyzing one of
the most complex distributed system currently deployed. Usually,
it relies on measurement campaigns using hop-limited probes
sent with traceroute. However, this probing tool comes with
several limits. In particular, some MPLS clouds might obfuscate
collected traces. Thus, the resulting Internet maps, the inferred
properties, and the graph models are incomplete and inaccurate.

In this paper, we introduce TNT (Trace the Naughty Tunnels),
an extension to Paris traceroute for revealing, or at least detect,
all MPLS tunnels along a path. First, along with traceroute
and ping probes, TNT looks for hints indicating the presence of
hidden tunnels. Those hints are peculiar patterns in the resulting
output, e.g., significant TTL shifts or duplicate IP addresses.
Second, if those hints trigger alarms, TNT launches additional
dedicated probing for possibly revealing hidden tunnels. We
use GNS3 to reproduce, verify, and understand the limits
and capabilities of TNT in a controlled environment. We also
calibrate the thresholds at which alarms are triggered through
a dedicated measurement campaign. Finally, we deploy TNT on
the Archipelago platform and provide a quantified classification
of MPLS usage. All our results, including the data, the code, and
the emulation configurations, are fully and publicly available.

I. INTRODUCTION

For now twenty years, the Internet topology discovery has

attracted a lot of attention from the research community [1].

First, numerous tools [2], [3], [4] have been proposed to better

capture the Internet at the IP interface level (mainly based

on traceroute) and at the router level (by aggregating IP

interfaces of a router through alias resolution [5]). Second,

the data collected has been used to model the Internet [6], but

also to have a better knowledge of the network ecosystem and

how it is organized by operators.

However, despite the work done so far, a lot of issues still

need to be fixed, especially in data collection processes based

on traceroute. For instance, collecting data about Layer-2

devices connecting routers is still an open question, although

it has been addressed previously with a, nowadays, deprecated

tool (i.e., IGMP-based probing) [7]. Another example is the

relationship between traditional network hardware and the so-

called middleboxes [8], [9]. Finally, MPLS tunnels [10] also

have an impact on topology discovery as they allow to hide

internal hops [11], [12]. Efforts have been made in discovering

MPLS infrastructures, based on traceroute [11], [13], IP

Record Route option [14], [15], or ICMP timestamp [16].

This paper focuses on the interaction between

traceroute and MPLS. In a nutshell, MPLS simplifies

and extends the forwarding data plane thanks to the insertion

of labels (called Label Stack Entries, or LSE) before the IP

header. MPLS packets are forwarded using an exact match

lookup of a 20-bit value carried within the LSE. At each

MPLS hop, the label of a packet is either pushed, popped, or

swapped with its associated outgoing label provided within the

MPLS switching table. MPLS comes with several advantages:

enabling traffic engineering, providing new services such as

VPRN, and ensuring inter-domain routing scalability at the

AS scale. Some MPLS tunnels may be natively revealed

to traceroute because, when the MPLS TTL expires,

MPLS routers generate ICMP time-exceeded messages

embedding the LSE [13], [11]. However, MPLS supports

optional features that make tunnels more or less invisible to

traceroute. Such features modify the way routers process

the IP and MPLS TTL of a packet. By carefully analyzing

several MPLS related patterns based on TTL values (e.g.,

the quoted forward TTL or the returned TTL of both error

and standard replies), one can identify and possibly discover

L3-hops hidden within an MPLS cloud. A first attempt

has been already proposed for revealing so-called Invisible

tunnels [12].

This paper aims at improving the efficiency of their dis-

covery in order to reveal (or at least identify) more invisible

tunnels at a lower cost. This is done by introducing TNT (Trace

the Naughty Tunnels), an open-source scamper [18] plugin ex-

tension based on Paris traceroute [17], that includes techniques

for inferring, classifying, and possibly revealing MPLS tunnels

content. Compared to our previous work [11], [12], this paper

provides multiple additional contributions. First, we revise

our initial MPLS tunnel taxonomy by clearly distinguishing

“Invisible PHP” and “Invisible UHP” tunnels and by better

classifying and understanding “Opaque” tunnels. Second, we

complement state of the art measurement techniques in order

to reveal most MPLS tunnels and at least detect them all,

even those built to hide their content. Those measurement tech-

niques are performed on-the-fly with traceroute according

to indicators and triggers that are used to determine the

potential presence of a tunnel and possibly its nature. Third,

we have implemented those techniques in TNT and deployed

it on the Archipelago platform [19]. We verified and improved

the design of TNT using comprehensive1 GNS3 emulation

tests. This paper also addresses the question of the calibration

of TNT regarding its triggers. Moreover, using a large-scale

1Emulations details are provided in a dedicated technical report [20].

978-3-903176-17-1 / © 2019 IFIP

65

measurement campaign, we correct and, so, update previous

results [11] that erroneously underestimated or overestimated

the prevalence of some tunnel classes. Finally, all our code

(TNT, GNS-3 configurations, data processing and analysis),

as well as our collected dataset, are made available.2

The remainder of this paper is organized as follows: Sec. II

provides the required technical background for this paper;

Sec. III revises the MPLS taxonomy initially introduced by

Donnet et al. [11] in the light of newly understood MPLS

behaviors; Sec. IV discusses how the content of invisible

tunnels might be exposed to traceroute; Sec. V introduces

TNT, our extension to traceroute for revealing the content

of all MPLS tunnels; Sec. VI discusses TNT parameters and

its calibration, while Sec. VII presents results of the TNT de-

ployment over the Archipelago architecture; finally, Sec. VIII

concludes this paper by summarizing its main achievements.

II. MPLS BACKGROUND

A. MPLS Basics and Control Plane

MPLS routers, i.e., Label Switching Routers (LSRs), ex-

change labeled packets over Label Switched Paths (LSPs). In

practice, those packets are tagged with one or more Label
Stack Entries (LSE) inserted between the frame header and the

IP header. Each LSE is made of four fields: an MPLS label

used to forward the packet to the next router, a Traffic Class

field for quality of service, priority, and Explicit Congestion

Notification, a bottom of stack flag bit3, and a time-to-live

(LSE-TTL) field having the same purpose as the IP-TTL field,

i.e., avoiding forwarding loops.

Labels may be allocated through the Label Distribution
Protocol (LDP4) [23]. Each LSR announces to its neighbors

the association between a prefix in its routing table and a

label it has chosen for a given Forwarding Equivalent Class (a

FEC is a destination prefix by default), populating so a Label
Forwarding Information Table (LFIB) in each LSR. With LDP,

a router advertises the same label to all its neighbors for a

given FEC. A LSR may bind labels to destination prefixes

either (i) through ordered LSP control (default configuration of

Juniper routers [24]) or (ii), through independent LSP control
(default configuration of Cisco routers [25, Chap. 4]).

In the former mode, a LSR only binds a label to a prefix

if it is local (e.g., a loopback address of the LSR being

the exit point of the LSP at the edge of the cloud), or if

it has received a label binding proposal from its IGP next-

hop towards the given prefix. Juniper routers use this mode

as default and only propose labels for loopback IP addresses.

In the second mode, the Cisco default one, a LSR creates a

label binding for each IGP prefix it has in its RIB (connected,

learned, or redistributed within the IGP) and distributes it to

2See http://www.montefiore.ulg.ac.be/~bdonnet/mpls
3In order to indicate whether the current LSE is the last in the stack. For

the sake of simplicity, we will only consider a single LSE per packet in the
remainder of this paper.

4Labels might also be distributed with RSVP-TE [21] for traffic engineering
purposes. LDP is the most prominent label binding protocol [22], [12] as it
is generally the per-default deployment in most MPLS clouds.

all its neighbors. Thus, a label proposal is sent to all neighbors

without ensuring that the LSP is enabled up to the exit point of

the tunnel. To signal the end of a LSP, the last LSR advertises

a terminating label for the corresponding FEC. This label may

either be Explicit or Implicit NULL.

B. MPLS Data Plane and TTL processing

Depending on its location along the LSP, a LSR applies one

of the three following operations:

• PUSH. The first MPLS router (Ingress Label Edge Router
– Ingress LER – PE1 on Fig. 1) pushes the LSE in the

IP packet, associating so its FEC to a LSP and turning

it into an MPLS frame. When pushing the LSE, either

the Ingress LER sets the LSE-TTL to an arbitrary value

(255, using the no-ttl-propagate option, called the

pipe mode) or it copies the current IP-TTL value into

the LSE-TTL (with the ttl-propagate option, the

default behavior called the uniform mode).

• SWAP. Within the LSP, each LSR makes a label lookup in

the LFIB, swaps the incoming label with its correspond-

ing outgoing label, and sends the MPLS packet further

along the LSP. While the IP-TTL is not modified, the

LSE-TTL is decremented at each hop. If the LSE-TTL

expires, the LSR forges an ICMP time-exceeded that

is sent back to the packet originator. In that case, the LSR

may also quote the full MPLS LSE stack of the expired

packet in the ICMP time-exceeded message [26].

• POP. The Ending Hop (EH), the last LSR of the LSP,

deletes the LSE, turning the MPLS frame back into an IP

packet. Depending on the configuration, two unlabelling

modes are possible. The default mode [12] is Penultimate
Hop Popping (PHP), where the Penultimate Hop LSR (PH

– P3 in Fig. 1) is in charge of removing the LSE to reduce

the load on the Egress. With the Ultimate Hop Popping
(UHP), the Egress LER (PE2 in Fig. 1) is responsible

for the LSE removal, typically to ensure that the Traffic

Engineering information (or the VPRN label), if any, is

carried up to the LSP end.

When popping the LSE, the EH has to decide the TTL value

to copy in the IP header. If the ttl-propagate feature has

not been disabled, the LSE-TTL will be lower than the IP-

TTL and should thus replace the current IP-TTL, while the

IP-TTL should be selected otherwise (with the pipe mode).

This way, the resulting outgoing TTL cannot be greater than

the incoming one. In the latter case, internal hops are not

counted, the IP-TTL being unmodified, while they are for the

former uniform case.

In order to synchronize both ends of the tunnel without

any message exchange, two mechanisms might be used for

selecting the IP-TTL at the EH: (i) applying a MIN(IP-TTL,

LSE-TTL) operation (solution implemented in Cisco PHP

configurations [25]), or (ii) assuming the Ingress configuration

(ttl-propagate or not) is the same as the local configu-

ration. This second solution is implemented by JunOS and

also in some Cisco UHP configuration. Applying the MIN(IP-

TTL, LSE-TTL) allows for maintaining a consistent behavior

66

P1

Invisible UHP

Explicit Implicit

Invisible PHP

Fig. 1: Illustration of MPLS vocabulary and relationship between MPLS and traceroute. The figure is made of three parts.

The upper part represents the network topology we use throughout the paper to illustrate concepts. In particular, with respect

to MPLS, P3 is the Penultimate Hop (PH). In the case of PHP, P3 is the Ending Hop (EH) and is responsible for removing

the LSE. In the case of UHP, the LSE is removed by the Egress LER (PE2). The middle part of the figure presents the

MPLS Tunnel taxonomy, as observed with traceroute (it is an improvement of the original one proposed by Donnet et al.)

Finally, the bottom part of the figure provides triggers and indicators of an MPLS tunnel presence when probing with TNT. The

relationship between the trigger/indicator and the observation made with probing is provided in red. Additional information

(such as time-exceeded path length) is provided. This is used in Sec. V for illustrating TNT.

even in the presence of heterogeneous ttl-propagate
configurations.

ICMP processing in MPLS tunnels varies according to

the ICMP type of the message. ICMP Information messages
(e.g., echo-reply) are directly sent to the originator of

the echo-request. On the contrary, ICMP Error mes-
sages (e.g., time-exceeded) are generally forwarded to the

Egress LER that will be in charge of forwarding the packet

through its IP plane [11]. Differences between Juniper and

Cisco OSes and configurations are discussed in details in an

extended version of this paper [20].

III. REVISITING MPLS TUNNELS TAXONOMY

According to whether LSRs implement RFC4950 (i.e.,

ICMP time-exceeded quoting MPLS LSE) or not and

whether they activate the ttl-propagate option or not,

MPLS tunnels are more less visible to traceroute [11].

Explicit tunnels are those with RFC4950 and the

ttl-propagate option enabled. As such, they are fully

visible with traceroute, including labels along the LSP.

Implicit tunnels also enable the ttl-propagate option

but do not implement the RFC4950. IP level information is

not missing but LSRs are seen as ordinary routers; it thus

leads to a lack of “semantic” in the traceroute output.

Opaque tunnels are partially obscured from traceroute as

the ttl-propagate option is disabled while the RFC4950

is implemented. Moreover, an Opaque LSP ends at its

EH with a non-terminating label. Consequently, the EH is

seen as an MPLS hop while the content of the LSP is

hidden. Finally, Invisible tunnels are totally hidden as the

no-ttl-propagate option is enabled and the LSP ends

properly (RFC4950 being implemented or not).

As illustrated in Fig. 1, Explicit tunnels form the ideal

case as all the MPLS information comes natively with

traceroute. For Implicit tunnels, Donnet et al. [11] have

proposed techniques to identify their LSRs based on the way

they process ICMP messages and the quotation of the IP-TTL

in the time-exceeded reply (qTTL and UTURN in Fig. 1).

Opaque tunnels only occur with Cisco routers and are due

to LSP ending abruptly, in an improper fashion. As illustrated

in Fig. 1, Opaque tunnels and their length can be identified

thanks to the LSE-TTL quoted in ICMP time-exceeded.

Based on large-scale measurements and cross-validation using

our GNS3 emulation platform [20], we discovered that the vast

majority of Opaque tunnels seems to be caused by Carrier-of-

Carriers VPN or similar technologies. Indeed, they provoke an

abrupt tunnel ending as the end-to-end bottom label carried to

determine the outgoing VPN is not a terminating label.

The traceroute behavior for Invisible tunnel differs

according to the popping scheme (i.e., PHP or UHP) and the

OS, as illustrated in Fig. 1. While Invisible PHP tunnels are

identified through path length asymmetry [12] (see Sec. V),

Invisible UHP tunnels provoke a duplicated IP (at least with

the IOS 15.2). Upon the reception of a packet having an IP-

TTL of 1, the Egress LER (PE2 in Fig. 1) does not decrement

this TTL, but, rather, forwards the packet to the next hop (CE2

in the example), so that the Egress does not show up in the

trace. In contrast, the next hop will appear twice: once for

the probe that should have expired at the Egress and once at

the next probe. This surprising pattern, a duplicated IP at two

successive hops, illustrated as “Invisible UHP” in Fig. 1 might

be misunderstood as a forwarding loop.

67

IV. HIDDEN TUNNEL REVELATION

Techniques for revealing the content of Invisible PHP and

UHP tunnels are similar. However, in the case of an Invisible

PHP tunnel, they can be applied directly as we know both

ends of the tunnel (Ingress and Egress LER – see Fig. 1).

However, for Invisible UHP the Egress LER is missing from

the traceroute output (see Fig. 1).

It is, nevertheless, possible with Invisible UHP to infer the

outgoing IP interface of the Egress LER (the right interface,

in green, on PE2 in Fig. 1). Thanks to its retrieval, TNT can

force replies from the Egress LER incoming interface (the left

one, in red, on PE2 in Fig. 1). This technique, called buddy,

assumes, for the sake of simplicity although it can be extended,

a simple point-to-point connection between the Egress LER

and its next-hop. The corresponding IP addresses should then

belong to a /31 or a /30 prefix [7], [27] and are called buddies.

With a /30, four IP addresses are available: addresses 0 and

3 are the network and broadcast addresses while addresses

1 and 2 are used for numbering interfaces. Based on that, it

is quite straightforward to guess the address of CE2’s buddy

(i.e., PE2.right in Fig. 1). If CE2.left corresponds to address

0 (resp. address 3) in a /30, it means that PE2 and CE2

share a /31 and PE2.right is address 1 (resp. address 2) of

the /30. However, if CE2.left corresponds to /30 addresses

1, we launch a ping towards address 0 within the /30. If

an echo-reply is received, both interfaces are on a /31

and PE2.right corresponds to address 0. Otherwise, PE2.right

belongs to address 2. The same reasoning can be done with

address 2 in the /30 for CE2.left.

As ICMP time-exceeded typically contains the IP ad-

dress of the incoming interface having received the expired

probe, running a traceroute towards the inferred address

of PE2.right allows to obtain PE2.left. Once the potential

Ingress and Egress LERs are known, we can launch a hidden

tunnel revelation technique, i.e., DPR or BRPR [12]. The

choice of the technique depends on the way labels have been

bound to destination prefixes (see Sec. II-A). It is worth

recalling that we can easily discriminate Cisco and Juniper

devices using network fingerprinting [28].

On the one hand, with ordered LSP control (Juniper default

case), all the external BGP transit traffic goes through MPLS

tunnels while the traffic destined to internal prefixes relies on

IP forwarding. A single traceroute targeting the Egress

LER is enough to reveal all LSRs along the LSP. This tech-

nique is called Direct Path Revelation (DPR). Applying DPR

on Fig. 1, TNT simply sends probes targeting PE2 revealing

P1, P2, and P3 in a row (without labels, as for IP traffic).

On the other hand, with independent LSP control (Cisco

default case), LDP is enabled at a wider scope such that

each LSR binds labels for each prefix in its IGP RIB. Since

traceroute naturally reveals the incoming IP interface of

each Egress LER, we can apply a recursive traceroute
approach that targets this last internal prefix to reveal each

intermediate hop in a backward fashion from the Egress

LER to the Ingress LER. This technique is called Backward

Recursive Path Revelation (BRPR). Applying BRPR on Fig. 1,

we first send a traceroute towards PE2 and discover P3.

We next send a traceroute towards P3 and discover P2

and so on until the Ingress LER is met again.

V. TNT DESIGN

This section introduces our tool, TNT (Trace the Naughty

Tunnels), able to reveal most of MPLS tunnels hidden along a

path. TNT is built upon Paris Traceroute [17] to mitigate load

balancing issues.

TNT consists in collecting, in a hop-limited fashion, inter-

mediate IP addresses between the vantage point and a target.

Tracing a particular destination ends when the target has been

reached or a gap has been encountered (e.g., five consecutive

non-responding hops). TNT uses a moving window of two

hops such that, at each iteration, it looks for <Ingress/Egress>
pairs of candidates, possibly hiding Invisible tunnels.

For each pair of collected IP addresses, TNT checks for the

presence of tunnels through so-called indicators and triggers.

The former provides reliable indications about the presence

of an MPLS tunnel without necessarily requiring additional

probing. Generally, indicators suggest uniform tunnels (or to

the last hop of an Opaque tunnel), and are basic evidence

of visible MPLS presence such as LSEs quoted in the ICMP

time-exceeded packet (see Sec. V-A for details). Triggers,

except DUP_IP, are unsigned values suggesting the presence

of Invisible tunnels through a large shifting in path length (see

Sec. V-A for more details). When exceeding a given threshold

T , triggers fire path revelation methods between the candidate

Ingress and Egress LERs as already developed in Sec. IV.

A. Indicators and Triggers

Listing 1 provides the pseudo-code for checking indicators

and triggers such as implemented in TNT.

Listing 1: Pseudo-code for checking indicators and triggers

1 i f (i s _ m p l s (cur_hop))
2 i f (TLSE_TTL < cur_hop . l s e _ t t l < 255)
3 re turn LSE−TTL #Opaque t u n n e l
4 e l s e
5 re turn LSE # E x p l i c i t t u n n e l
6

7 i f (cur_hop . q t t l > 1)
8 re turn qTTL # I m p l i c i t t u n n e l
9

10 i f (cu r_hop == nex t_hop)
11 re turn DUP_IP # I n v i s i b l e UHP t u n n e l
12

13 # i n f e r r i n g p a t h l e n g t h from raw TTLs

14 LTE
R = p a t h _ l e n (cur_hop . t t l _ t e)

15 LER
R = p a t h _ l e n (cur_hop . t t l _ e r)

16 LT = cur_hop . p r o b e _ t t l

17 d i f f _ t e _ e r = LTE
R − LER

R
18

19 i f (s i g n _ i s _ j u n O S (cur_hop))
20 i f (d i f f _ t e _ e r ≥ TRTLA)
21 re turn RTLA # I n v i s i b l e PHP t u n n e l
22 e l i f (| d i f f _ t e _ e r | > TUTURN)
23 re turn UTURN # I m p l i c i t t u n n e l

24 i f (LTE
R − LT ≥ TFRPLA)

25 re turn FRPLA # I n v i s i b l e PHP t u n n e l

Tunnels indicators are pieces of evidence of MPLS tunnel

presence and concern cases where tunnels (or parts of them)

68

can be directly retrieved from the original traceroute.

Explicit tunnels are indicated through LSEs directly quoted

in the ICMP time-exceeded message – See line 5 in

Listing 1 and traceroute output on Fig. 1. Fig. 1 high-

lights the main patterns TNT looks for firing additional path

revelation in a simple scenario where forward and return paths

are symmetrical.

The indicator for Opaque tunnels consists in a single hop

LSP with a quoted LSE-TTL not being equal to an expired

value. This abnormal behavior is due to the way labels are

handled with Cisco routers, in particular with VPRN tunnel

ending. This is illustrated in Fig. 1 where we get a value of 252
because the LSP is actually 3 hops long. This surprising quoted

LSE-TTL is an evidence in itself. It is illustrated in lines 2 to 3

in Listing 1, where a hop is tagged as Opaque if the quoted

LSE-TTL is between a minimum threshold, TLSE_TTL(see

Sec. VI for fixing a value for the threshold) and 254 (LSE-

TTL is initialized to 255).

Implicit tunnels are detected through qTTL and/or UTURN

indicators [11]. First, if the IP-TTL quoted in an ICMP

time-exceeded message (qTTL) is greater than one, it

likely reveals the ttl-propagate option at the Ingress LER

of an LSP. For each subsequent traceroute probe within

the LSP, the qTTL will be one greater, resulting in an increas-

ing sequence of qTTL values. This indicator is considered in

line 7 in Listing 1. Second and by default, the UTURN indica-

tor relies on the fact that LSRs send ICMP time-exceeded
messages to the Egress LER which, in its turn, forwards

the packets to the probing source. However, such LSR reply

directly to other kinds of probes (e.g., echo-request)

using their own IP forwarding table, if available. As a result,

return paths are generally shorter considering echo-reply
messages than regarding time-exceeded replies. Thereby,

the UTURN indicator reflects this difference in these lengths.

On the one hand, such indicators are generally pieces of

evidence of visible MPLS tunnels not requiring further probing

(except for some LSE values, shown at line 2, also being

triggers for Opaque tunnels). On the other hand, triggers are

patterns suggesting the presence of Invisible tunnels (both PHP

and UHP) that could be revealed using additional probing (see

Sec. IV). In this category, TNT looks first for potential Invisible

UHP tunnels (line 10). As explained in Sec. III, they occur

with Cisco routers using IOS 15.2 and result in a duplicate IP

address in the trace output (CE2 in Fig. 1).

The two remaining triggers, RTLA (Return Tunnel Length

Analysis) and FRPLA (Forward/Return Path Analysis) [12]),

rely on path lengths. More precisely, RTLA is the difference

between the time-exceeded and the echo-reply return

path lengths, while FRPLA is the difference between the

forward and the return path lengths of traceroute probes

and associated replies. Both triggers are based on the idea that

replies sent back to the vantage point are also likely to cross

back the MPLS cloud, which will apply the MIN(IP-TTL,

LSE-TTL) operation at the EH of the return tunnel. In the

absence of Invisible tunnel, we expect those triggers to have a

value equal or close to 0. Therefore, any significant deviation

from this value is interpreted as the potential presence of an

Invisible MPLS cloud, and thus, fires additional path revelation

techniques (see Sec. IV).

To check for those triggers, we first extract the key distances

thanks to the IP-TTLs in replies received by the vantage point

(lines 14 to 16 in Listing 1). Since RTLA only works with

JunOS routers [12], prior to estimating the triggers, TNT uses

network fingerprinting [28] to determine the router brand of

the potential Egress LER (line 19 in Listing 1).

In the presence of a JunOS hardware (line 19),

time-exceeded and echo-reply packets have different

initial TTL values [28], and the RTLA trigger can exploit

the TTL gap between those two kinds of messages caused

by the MIN(IP-TTL, LSE-TTL) behavior at the Egress LER.

Indeed, the LER
R is longer than the LJTE

R as the MIN operation

considers a differentiated pick. This difference represents the

number of LSRs in the return LSP, and is compared to a pre-

defined threshold TRTLA(line 20). This threshold (see Sec. VI

for the parameter calibration) filters very short LSPs. Finally,

if the signature does not correspond to JunOS, TNT fallback

to the UTURN indicator (see line 23).

FRPLA is more generic and applies thus to any config-

uration. FRPLA allows to compare, at the AS granularity,

the forward (i.e., LT) and return paths (i.e., LTE
R) length

distribution. Return paths are expected to be longer than

forward ones as the tunnel hops are not counted in the forward

paths, while they are taken into account in the return paths

due to the MIN(IP-TTL, LSE-TTL) behavior at the return

Egress LER. Then, we can statistically analyze their length

difference and check if a shift appears (see Line 24). This is

illustrated in Fig. 1 (“Invisible PHP”) in which LT is 3 while

LTE
R is equal to 6, leading so to an estimation of the return

tunnel length of 3. In general, when no IP hop is hidden, we

expect that the resulting distribution will look like a normal

distribution centered in 0 (i.e., forward and return paths have,

on average, a similar length). If we rather observe a significant

and generalized shift towards positive values, it means the

AS makes probably use of the no-ttl-propagate option.

In order to handle path asymmetry, TNT uses a threshold,

TFRPLA> 0, to avoid generating numerous false positives.

B. TNT Limits

By using GNS3, we aimed first at verifying that the in-

ference assumptions considered in the wild are correct and

reproducible under a controlled environment. Second, some

of the phenomena we exploit to reveal tunnels in the wild

have been directly discovered in our testbed. Indeed, using

our testbed we reverse-engineered the TTL processing (con-

sidering many MPLS configurations, focusing on the POP

operation) of some common OSes used by many real routers.

Details of experiments done with GNS3 are provided in the

extended version of this paper [20].

Table I provides a summary of TNT capacities considering

several MPLS usages in standard configurations. For example,

it shows that TNT is able to discriminate between Cisco Invis-

ible UHP and PHP tunnels while it is not the case for Juniper

69

Configurations Pop Cisco iOS15.2 Juniper VMX
P2P circuits PHP FRPLA, BRPR RTLA, DPR

(e.g. LDP or UHP DUP_IP, BRPR ++ RTLA, DPR

RSVP-TE tunnels) ��� ��
P2MP overlays PHP LSE-TTL, - RTLA ++, -
(e.g. VPRN: CsC or UHP LSE-TTL++, - N/A
VPN BGP-MPLS) � �

TABLE I: TNT revelation (��) and classification (�) capacities

according to the OS and the MPLS tunneling underlying

technologies (P2P or P2MP). This table also provides the

default indicator/trigger and its associated path revelation

method (when it applies).

routers. Indeed, for both UHP/PHP Juniper configurations, the

trigger and the revelation methods are the same (RTLA and

DPR). Moreover, we also show for which cases our basic set

of techniques need to be extended for enabling revelation and

distinction among different classes. We use the symbol ++
to enforce these new requirements that are described in detail

in our technical report. Revealing UHP Cisco tunnels requires

in particular to extend BRPR with the additional buddy()
function and UDP probing. Another example is LSE-TTL++

that simply means that the quoted LSE-TTL is equal to 255.

As shown by Table I, VPRN tunnels may be classified by

TNT. In practice, they conduct to distinct surprising patterns:

opaque tunnels for Cisco routers and non-monotonic TTL

evolution with Juniper routers.

Our GNS3 platform shows that VPRN content cannot be

revealed with TNT, while other Opaque tunnels configurations

(i.e., routing devices heterogeneity, BGP edge configuration)

can. The absence of content revelation can be explained by

the IP address collected by TNT from the source IP field in

the ICMP reply. Usually, the collected address is the one of

the incoming interface of the Egress PE, while in the VPRN

case, it is the one assigned to the interface linked to the

VRF. In practice, this corresponds to the outgoing interface

towards the VPN at the customer’s side. Said otherwise, TNT
collects the outgoing address instead of the incoming one.

While the outgoing address usually allows TNT to get the

incoming one, it turns out to be impossible within a VPRN

(details are provided in [20] – in particular, we explain why

such opaque tunnels are not revealed but are detectable and

can be distinguished from other kinds of P2P tunnels).

VI. TNT CALIBRATION

For calibrating various TNT thresholds, we deployed TNT
on three vantage points (VPs) over the Archipelago infras-

tructure [19]. VPs were located in Europe (Belgium), North

America (San Diego), and Asia (Tokyo).

TNT was run on April 6th, 2018 towards a set of 10,000

destinations (randomly chosen among the whole set of

Archipelago destinations list). Each VP had its own list of

destinations, without any overlapping.

From indicators and triggers described in Sec. V-A, it is

obvious that UTURN is equivalent to RTLA for Juniper routers.

However, the TUTURNwill not have the same value than TRTLA.

TUTURN= 0 by design as any difference between echo-reply

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

(TR1
,TF1

)

(TR2
,TF1

)

(TR3
,TF1

)

(TR4
,TF1

)

(TR1
,TF2

)

(TR2
,TF2

)

(TR3
,TF2

)

(TR4
,TF2

)

(TR1
,TF3

)

(TR2
,TF3

)

(TR3
,TF3

)

(TR4
,TF3

)

(TR1
,TF4

)

(TR2
,TF4

)

(TR3
,TF4

)

(TR4
,TF4

)

Fig. 2: Receiver operating characteristic (ROC) curve of

TNT trigger thresholds (FRPLA and RTLA). TRx
refers to

TRTLA= x, while TFy
to TFRPLA= y.

and time-exceeded replies for the Cisco router signature

indicates LSE-/IP-TTL shifting. In practice, we reinforce the

condition by looking for at least two consecutive hops having

a cumulated UTURN ≥ 3. Regarding LSE-TTL quoted in

time-exceeded, we have observed [20] that it oscillates

between 236 and 254. A value of 236 for TLSE_TTLis then

enough to detect the presence of an Opaque tunnel.

For our tests, we varied TRTLAand TFRPLAbetween 1 and 4.

A full measurement campaign was launched for each pair

of parameter value (thus, a total of 16 measurement runs).

Moreover for each pair, if no trigger is pulled, a so-called

brute force revelation is undertaken: DPR/BRPR are launched

(with the use of the buddy if required). This brute force data

is used as a basis to evaluate the quality/cost tradeoff of the

two threshold values.

With the help of well calibrated thresholds, the results

associated to FRPLA and RTLA triggers allow for a binary

classification. These triggers provide a prediction, while the

results of additional probing give the true facts when some

conditions apply, i.e., being or not a tunnel. With that in

mind, one can assess the performance of FRPLA and RTLA

triggers through the analysis of True Positive Rate (TPR) and

False Positive Rate (FPR): we plot the results on a Receiver

Operating Characteristic (ROC) curve in Fig. 2. We define

TPR as the ratio of TNT success to the number of links

being actually MPLS tunnels (having a length greater than 1):

TNT triggers additional probing and actually reveals Invisible

tunnels (we have TPR + FNR = 1, i.e., when adding to

False Negative Rate, we obtain all links being long enough

tunnels). FPR is defined as the ratio of TNT failure to the

amount of standard IP links: it triggers for additional probing

but without revealing anything (we have FPR + TNR = 1,

i.e., when adding to True Negative Rate, we obtain all IP

links without tunnels). In this analysis the brute force data

provides the ground data that we consider reliable enough;

revelation is fired at each hop and, if nothing is revealed,

we consider that there is no tunnel (we do not consider

inconclusive cases as TNT did not cross the potential Ingress or

Egress LER). The red dotted diagonal provides the separation

between positive results for TNT (above part of the graph) and

70

negative results (below part of the graph). Finally, the black

dotted line extrapolates ground measurement results.

We observe that the results are essentially positive for

TNT and its two firing thresholds, TRTLAand TFRPLA. The best

calibration combination, between (TR1
, TF3

) and (TR2
, TF3

),

provides results offering a compromise close to 80%-20%:

while we expect to reveal at least 80% of existing tunnels

(MPLS artificial direct links), TNT has a controlled overhead

of 20%, i.e., it fires useless additional probing for an average

limited to two actual IP links over ten.

We also notice that the amount of probes required for actu-

ally revealing the content of Invisible tunnels remains almost

stable, whatever the values for TFRPLAand TRTLA. The additional

traffic generated by erroneous triggers or by inconclusive

revelation decreases while TFRPLAincreases. The overhead of

TNT is quite limited compared to a standard active campaign

(i.e., considering the overall information gathered).

When calibrated properly in order to limit both useless

probing and missed tunnels (e.g., TR1
, TF3

), TNT can reveal

80% of hidden MPLS tunnels by generating less than 10% of

additional probing. Next section will show that these Invisible

tunnels account for more than 15% of MPLS tunnels in general

(absolute values are given in Table II).

VII. TUNNELS QUANTIFICATION WITH TNT

We deployed TNT on the Archipelago infrastructure [19] on

April 23rd, 2018 with parameters TFRPLAfixed to 3 and TRTLAto

1, according to results discussed in Sec. VI.

TNT has been deployed over 28 vantage points, scattered

all around the world: Europe (9), North America (11), South

America (1), Asia (4), and Australia (3). The overall set of

destinations, nearly 2,800,000 IP addresses, is inherited from

the Archipelago dataset and spread over the 28 VPs to speed

up the probing process.

A total of 522,049 distinct IP addresses (excluding

traceroute targets) has been collected, with 28,350 being

non publicly routable addresses (and thus excluded from

our dataset). Each collected routable IP address has been

pinged, only once per vantage point, allowing us to collect

additional data for fingerprinting [28]. Our dataset and our

post-processing scripts are freely available.2

Table II provides the number of MPLS tunnels discovered

by TNT, per tunnel class as indicated in the first column. The

indicators/triggers are provided, as well as the additional rev-

elation technique used. Without any surprise, Explicit tunnels

are the most prevalent class (76% of tunnels discovered).

Implicit tunnels represent 5% of the whole dataset, with the

UTURN indicator providing more results than qTTL. However,

those results must be taken with care as UTURN is subject

to false positive (implicit UTURN tunnels are likely to be

overestimated because of possible confusion with RTLA for

Juniper routers), while qTTL is much more reliable [29].

Compared to previous works, it is clear that this class is

not as prevalent as expected at the time, both because we

corrected and improved our methodology, and also because

the RFC4950 is likely to be more and more deployed.

Opaque tunnels are less prevalent (1.7% of tunnels discov-

ered). It is worth noticing that additional revelation techniques

(DPR or BRPR) does not perform well with such tunnels.

The content of 98% of Opaque tunnels cannot be revealed,

suggesting so that the vast majority of Opaque tunnels seems

to arise due to Cisco VPRNs.

The proportion of Invisible tunnels is not negligible (16% of

tunnels in our dataset). These measurements clearly contradict

our previous work suggesting that Invisible tunnels were

probably 40 to 50 times less numerous than Explicit ones [11,

Sec. 8]. More precisely, Invisible PHP is the most prominent

configuration (87% of Invisible tunnels belongs to the Invisible

PHP class), confirming so our last survey [12]. RTLA appears

as being the most efficient trigger. This is partially due to the

order of triggers in the TNT code as it favors a high ranked

trigger (RTLA) compared to low ranked one (FRPLA– in case

both apply, we prefer to use the most reliable, i.e., the less

subject to any interference such as BGP asymmetry). DPR

works better than BRPR, which is obvious as it is triggered

by RTLA (Juniper routers). For Invisible UHP, less numerous,

it is worth noticing that the buddy, prior to BRPR or DPR

revelation, was required in only 25% of the cases. In other

cases, a simple BRPR or DPR revelation was enough to get

the tunnel content.

The column labeled “mix” corresponds to tunnels partially

revealed thanks to BRPR and partially with DPR. Typically,

it comes from heterogeneous MPLS clouds. For instance,

ISP may deploy both Juniper and Cisco hardware without

any homogeneous prefixes distribution (i.e., local prefixes for

Juniper, all prefixes for Cisco – See Sec. II-A for details). Note

that it is also possible that the UHP and PHP label popping

techniques co-exist when using our backward recursive path

revelation (BRPR). Although not explained in Sec. V for clarity

reasons, TNT can deal with such complex situations, making

the tool robust to pitfalls encountered in the wild (5% of the

Invisible tunnels encountered). The column labeled “1HOP”

corresponds to single LSR tunnels where DPR and BRPR

cannot be distinguished.

Finally, it is worth noting that some tunnels may belong

to multiple classes. We have indeed encountered situations in

which, e.g., an Explicit tunnel contains a few LSRs without

RFC4950 enabled (i.e., being so Implicit). Those tunnels and

their respective LSRs are not counted in Table II and represent

less than 5% of all tunnels founds.

While the column “# LSPs” provides the total amount

of MPLS tunnels detected or revealed per tunnel class, the

column “# LSRs” gives the contribution of each class in terms

of unique IP addresses detected (with indicators) or revealed

(with triggers). In both cases, the share of new MPLS data

(i.e., non-explicit) that was detected (for Implicit and most

Opaques) or revealed (for Invisible and some Opaques) is

significant, representing more than 20% of the overall quantity

of MPLS information.

Finally, Fig. 3 provides the distribution of path length with

standard traceroute and with TNT. We clearly see that

TNT leads to a shift of the distribution towards the right (longer

71

Tunnel Type Indicator/Trigger # LSP Revealed per Category # LSP # LSRs # LSRs
DPR BRPR 1HOP Mix per LSP

Explicit LSE headers - - - - 150,036 31,749 2

Implicit
qTTL - - - - 2,689 1,766 2
UTURN - - - - 7,216 7,155 2

Opaque LSE-TTL 22 17 43 - 3,346 52 2

Invisible UHP DUP_IP 1,609 1,531 686 296 4,122 862 2

Invisible PHP
RTLA 11,268 1,191 2,595 279 15,333 3,008 4
FRPLA 5,903 2,555 3,260 1,012 12,730 2,897 3

Total 18,802 5,294 6,584 1,587 195,525 47,489 3

TABLE II: Raw number of tunnels discovered by TNT per tunnel category and class

(see Sec. III). No additional revelation technique is necessary for Explicit and Implicit

tunnels.

0 5 10 15 20 25 30
Path Length

0

50000

100000

150000

200000

250000

N
u
m
b
er

of
T
ra
ce
s Traceroute

Median

TNT

Median

Fig. 3: Path length distribution correc-

tion with TNT.

paths). This shift is lower than the median length of tunnels

given in the last column of Table II because all traces are

taken into account, even the ones with no tunnels. Vanaubel et

al. [12] have shown how revealing hidden tunnels also impact

standard Internet model metrics.

VIII. CONCLUSION

In this paper, we first revised the MPLS classification

proposed by Donnet et al. [11]. Second, we introduced TNT
(Trace the Naughty Tunnels), an extension to Paris traceroute

for revealing most MPLS tunnels along a path. Our fully

integrated tool reveals, or at least detect, all kinds of tunnels

in two simple stages. TNT relies on indicators and triggers to

classify and possibly tag tunnels as hidden, and then launches

additional probing to reveal their content. TNT provides the

ability to unveil the MPLS ecosystem deployed by ISP. Recent

works have indeed shown that MPLS is largely deployed by

most ISP [11], [22], [13]. By running TNT periodically from

largely distributed measurement platforms (e.g., Archipelago,

RIPE Atlas), we expect to see numerous researches using our

tool to correct graph properties and models used to better

understand the actual Internet topology.

REFERENCES

[1] B. Donnet and T. Friedman, “Internet topology discovery: a survey,”
IEEE Communications Surveys and Tutorials, vol. 9, no. 4, pp. 2–15,
December 2007.

[2] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-
rithms for large-scale topology discovery,” in Proc. ACM SIGMETRICS,
June 2005.

[3] R. Beverly, “Yarrp’ing the Internet: Randomized high-speed active
topology discovery,” in Proc. ACM Internet Measurement Conference
(IMC), November 2016.

[4] E. Katz-Bassett, H. Madhyastha, V. Adhikari, C. Scott, J. Sherry, P. van
Wesep, A. Krishnamurthy, and T. Anderson, “Reverse traceroute,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentations (NSDI), June 2010, see https://www.revtr.ccs.neu.edu.

[5] K. Keys, “Internet-scale IP alias resolution techniques,” ACM SIG-
COMM Computer Communication Review, vol. 40, no. 1, pp. 50–55,
January 2010.

[6] R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the
Internet: A Statistical Physics Approach. Cambridge University Press,
2004.

[7] P. Mérindol, B. Donnet, O. Bonaventure, and J.-J. Pansiot, “On the
impact of layer-2 on node degree distribution,” in Proc. ACM Internet
Measurement Conference (IMC), November 2010.

[8] G. Detal, b. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proc. ACM Inter-
net Measurement Conference (IMC), October 2013.

[9] K. Edeline and B. Donnet, “A first look at the prevalence and persistence
of middleboxes in the wild,” in Proc. International Teletraffic Congress
(ITC), September 2017.

[10] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching
architecture,” Internet Engineering Task Force, RFC 3031, January 2001.

[11] B. Donnet, M. Luckie, P. Mérindol, and J.-J. Pansiot, “Revealing
MPLS tunnels obscured from traceroute,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 2, pp. 87–93, April 2012.

[12] Y. Vanaubel, P. Mérindol, J.-J. Pansiot, and B. Donnet, “Through the
wormhole: Tracking invisible MPLS tunnels,” in In Proc. ACM Internet
Measurement Conference (IMC), November 2017.

[13] J. Sommers, B. Eriksson, and P. Barford, “On the prevalence and
characteristics of MPLS deployments in the open Internet,” in Proc.
ACM Internet Measurement Conference (IMC), November 2011.

[14] R. Sherwood and N. Spring, “Touring the internet in a TCP sidecar,” in
Proc. ACM Internet Measurement Conference (IMC), October 2006.

[15] R. Sherwood, A. Bender, and N. Spring, “Discarte: a disjunctive Internet
cartographer,” in Proc. ACM SIGCOMM, August 2008.

[16] P. Marchetta and A. Pescapé, “DRAGO: Detecting, quantifying and
locating hidden routers in traceroute IP paths,” in Proc. Global Internet
Symposium (GI), April 2013.

[17] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies
with Paris traceroute,” in Proc. ACM Internet Measurement Conference
(IMC), October 2006.

[18] M. Luckie, “Scamper: a scalable and extensible packet prober for active
measurement of the Internet,” in Proc. ACM Internet Measurement
Conference (IMC), November 2010.

[19] k. claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov, “Internet
mapping: from art to science,” in Proc. IEEE Cybersecurity Application
and Technologies Conference for Homeland Security (CATCH), March
2009.

[20] Y. Vanaubel, J.-R. Luttringer, P. Mérindol, J.-J. Pansiot, and B. Donnet,
“Tnt, watch me explode: A light in the dark for revealing mpls tunnels,”
arXiv, cs.NI 1901.10156, February 2019.

[21] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP tunnels,” Internet Engineering
Task Force, RFC 3209, December 2001.

[22] Y. Vanaubel, P. Mérindol, J.-J. Pansiot, and B. Donnet, “MPLS under
the microscope: Revealing actual transit path diversity,” in Proc. ACM
Internet Measurement Conference (IMC), October 2015.

[23] L. Andersson, I. Minei, and T. Thomas, “LDP specification,” Internet
Engineering Task Force, RFC 5036, October 2007.

[24] D. Aydin, “CISCO vs. Juniper MPLS,” June 2014, see http://
monsterdark.com/cisco-vs-juniper-mpls/.

[25] L. De Ghein, MPLS Fundamental: A Comprehensive Introduction to
MPLS (Theory and Practice). CISCO Press, November 2006.

[26] R. Bonica, D. Gan, D. Tappan, and C. Pignataro, “ICMP extensions for
multiprotocol label switching,” Internet Engineering Task Force, RFC
4950, August 2007.

[27] J.-F. Grailet, F. Tarissan, and B. Donnet, “TreeNET: Discovering and
connecting subnets,” in Proc. Traffic Monitoring and Analysis Workshop
(TMA), April 2016.

[28] Y. Vanaubel, J.-J. Pansiot, P. Mérindol, and B. Donnet, “Network
fingerprinting: TTL-based router signature,” in Proc. ACM Internet
Measurement Conference (IMC), October 2013.

[29] G. Davila Revelo, M. A. Ricci, B. Donnet, and J. I. Alvarez-Hamelin,
“Unveiling the MPLS structure on Internet topology,” in Proc. Traffic
Monitoring and Analysis Workshop (TMA), April 2016.

72

