
Kraaler: A User-Perspective Web Crawler

Thomas Kobber Panum∗, René Rydhof Hansen†, Jens Myrup Pedersen∗
∗Department of Electronic Systems, †Department of Computer Science

Aalborg University, Denmark

Emails: tkp@es.aau.dk, rrh@cs.aau.dk, jens@es.aau.dk

Abstract—Adaption of technologies being used on the web is
changing frequently, requiring applications that interact with
the web to continuously change their ability to parse it. This
has led most web crawlers to either inherent simplistic parsing
capabilities, differentiating from web browsers, or use a web
browser with high-level interactions that restricts observable
information. We introduce Kraaler, an open source universal web
crawler that uses the Chrome Debugging Protocol, enabling the
use of the Blink browser engine for parsing, while obtaining
protocol-level information. The crawler stores information in a
database and on the file system and the implementation has been
evaluated in a predictable environment to ensure correctness
in the collected data. Additionally, it has been evaluated in a
real-world scenario, demonstrating the impact of the parsing
capabilities for data collection.

I. INTRODUCTION

Information on the web has reached magnitudes and change

at a rate which are infeasible for humans to structure and

manage. This has motivated the use of machines for automated

solutions capable of interpreting content on the web and

represent the interpretation in a structured form. These types

of solutions are referred to as web crawlers and consist of

applications that systematically visit web servers and parse

their content [1]. Web crawlers have been an active research

topic within recent decades and were initially motivated by

the need for making the web searchable [2]. However, they

are now being used in a wider variety of applications, such as

gathering data sets for statistical modeling [3], [4].

The typical retrieval process of web crawlers involves

exploiting the interlinked structure of Hypertext Markup Lan-

guage (HTML) documents being collected, by parsing the

collected documents for hyperlinks to other documents and

consider the found links as documents to be collected. This

process stems from a time when web pages included fewer

content types and relied less on externally linked dependen-

cies.

However, the number of technologies and content types used

on the web has increased drastically over recent decades. This

has led to the end user client, the web browser, to become

a complex application and include parsers for a variety of

content types. The size of the code bases of the three most

widely adopted parsers among web browsers (Chromium Blink

[5], WebKit [6], Mozilla Gecko [7]) highlight this complexity,

and are respectively: 2.9M, 13.9M, and 20.7M lines of code,

as of April 2019. This complexity leaves most web crawlers

unable to implement parsing capabilities to the same extent,

causing a deficit in method web applications are being crawled

compared to the user’s perspective. This deficit stems from

the fact that existing web crawlers do not parse the crawled

content to the same extent as a typical browser engine would.

Examples of crawlers using web browsers have been seen, but

their interaction with the web browsers leaves them unable

to access detailed information about the underlying request

behavior, e.g. usage of the HTTP protocol and subsequent

requests. This leads to information being lost or unavailable

for analysis and is a continuous problem as the capabilities of

web browsers change over time.

In order to be able to enhance information gained through-

out a crawling process, and have it represent the user’s

perspective, we introduce the universal web crawler, Kraaler.

It is a user-perspective web crawler that uses the browser

engine of Google Chrome (Chrome), Blink [5], through the

use of the Chrome Debugging Protocol (CDP) while obtaining

information about parsing and HTTP usage. The contributions

of our work can be summarized as:

• Demonstrate a new method for user-perspective web

crawling while observing detailed protocol information.

• Present a data structure containing this information while

making it efficiently available for behavioral analysis of

web applications, such as phishing detection.

• Provide an open-source and extendable implementation.

The implemented crawler is evaluated by exposing it to a

predictable environment and a real-world environment, respec-

tively. Each environment provides the ability to validate the

correctness of the obtained data and demonstrate the impact

of the web browser’s parser in a crawling setting. Lastly,

examples of the applicability of obtained data for behavioral

analysis of web applications is shown.

II. RELATED WORK

Information hosted on web servers is accessed through

the Hypertext Transfer Protocol (HTTP) or its encrypted

variant Hypertext Transfer Protocol Secure (HTTPS). End

users typically use these protocols on a high-level through

their own client, the web browser. Machine-based approaches,

in the form of web crawlers, tend to typically interact with

the protocol directly. Browsers abstract from the numerous

underlying requests being sent back and forth between the

browser and the web server, when a user interacts with a web

page. The order, and to which extent these requests are being

sent, are determined by the browser’s parsing component, the

browser engine.

978-3-903176-17-1 / © 2019 IFIP

153



Browser engines contained within web browsers impact

and define the capabilities of the applications hosted on

the internet. They thereby serve both as a delimiter and

enabler of technologies used for web applications and affect

their respective usage. Namely, the programming language

JavaScript was designed to be used for web applications and is

now considered one of the most widely adopted programming

languages [8], [9].

Two common web browsers, Chrome and Mozilla Firefox

(with respective market shares of ≈ 70% and ≈ 10% [10]), are

using their own respective browser engines: Blink (a fork of

WebKit) and Gecko. These engines are able to interpret and

display numerous types of content, markup languages, and

programming languages. This ability has developed over time

and continues to do so, as the desire for richer web applications

keeps persisting.

Web crawlers are applications for systematically gathering

information from web servers, and have been an active re-

search topic for decades. The research was initiated by the

Mercator web crawler, which went on to become the web

crawler of the Alta Vista search engine [2]. Following this,

Kumar et al. has surveyed existing work and proposes a five

type categorization of web crawlers: Preferential crawlers,

hidden web crawlers, mobile crawlers, continuous crawlers,

and universal crawlers [1].

Preferential crawlers are conditioning their crawling behav-

ior, such as restricting only gathering from a subset of sources

or only gather selective information.

Hidden (or sometimes referred to as Deep) web crawlers

focus on crawling information that cannot be obtained by just

following hyperlinks. Examples of this are web applications

that use dynamic input for presenting results, such as search

engines that require a search query in order to present a

list of results. CrawlJax is a hidden web crawler capable of

crawling web applications that rely on JavaScript for creating

user interactions [11]. In order to crawl such web applications,

PhantomJS is used for instrumenting a web browser to pro-

grammatically perform user actions within the browser [12].

Mobile web crawlers constitute a subset of crawlers that use

an experimental method of crawling proposed by [13]. This

method seeks out to avoid the iterative crawling behavior, of

obtaining information across multiple requests for one source,

by expecting remote web servers to be able to receive a data

specification. The received data specification is then used to

initiate a stream of actions locally on the remote server, in

order to reduce bandwidth usage in the crawling process.

Continuous crawlers constitute a subset of crawlers that

addresses the problem of prioritizing crawling targets, in the

setting of restricted resources and crawling targets continu-

ously changing their content.

Universal crawlers are the counterpart to the previously

described crawlers, as they are designed for a broader and less

specific use case. They are designed to visit any type of content

or hyperlink they observe and repeat this process continuously.

An example of a universal web crawler is BUbiNG, an open

source high-performance distributed web crawler that performs

HTML parsing and can store results on distributed storage

systems [14]. Apache Nutch is another universal web crawler

that has a modular design and has been actively developed for

more than a decade. The modular design of Apache Nutch has

led researchers to use it as a base, and extend it to new types

of web crawlers [15].

A subset of web crawlers set out to extract exact information

in a structured manner from a web application, this method

is known as web scraping. Scrapy is a widely popular web

scraping framework developed in the programming language

Python [16]. The framework requires the user to be familiar

with Python in order to specify which information to extract

and the following method. An alternative solution is Portia, a

web scraping framework built on Scrapy requiring no compe-

tences in programming [17]. The user clicks on information

on a web page, and the framework attempts to extrapolate the

underlying HTML template, defining a strategy for crawling

the desired information. This extrapolation can, however, lead

to incorrect identification of the underlying HTML structure,

leading to incorrect or false information being extracted.

Kraaler is a universal web crawler that uses the parser of

a web browser for interpreting web applications, allowing it

to observe HTTP requests initiated by the HTML parser, the

JavaScript interpreter, and more. A similar abstract design has

been patented by Kraft et al., which describes the use a web

browser for gathering dynamic content of web applications

and utilize for optical character recognition for interpreting

text in images [18]. However, certain design details are undoc-

umented and, to our knowledge, there exists no open source

implementation of the described design nor a specification of

the data it collects.

III. USER-PERSPECTIVE CRAWLING

HTTP is a protocol based upon requests that are answered

by responses, and when a user enters a URL in their browser, a

request of the method GET with a couple of key-value pairs in

the header is sent towards the host specified in the URL. Most

of the existing universal crawlers base their crawling behavior

on this, so given a set of URLs, the crawler will perform GET
requests towards a given URL and retrieve the body of the

corresponding HTTP response. This response body, which is

often assumed to contain HTML, is typically analyzed for the

presence of hyperlinks or URLs that are then added to the

pool of known URLs.

Modern web applications consist of multiple content types,

spread across multiple URLs referenced to by an HTML

document, acting as dependencies for the web application. The

browser is expected to visit the HTML document first, and then

a process of parsing it starts, leading the browser to perform

asynchronous requests for resources that the document refer-

ences. The parsing process repeats for every response that is

received by the browser, creating a recursive parsing process,

causing the browser to perform a series of subsequent requests

from the initial request of the document.

This recursive request behavior can be seen as an interlinked

dependency graph of distributed resources, rooting at an initial

154



/style.css

http://example.com/ HTML

http://example.com/

browser visit: example.com

Displayed
content

redirect

/other/style.css

CSS
JS/main.js

error: timeout

/logo.png

request
response

Fig. 1. Series of subsequent requests being performed by a web browser, when visiting a page.

document, as illustrated in Figure 1. The initial document is

typically an HTML document and yields the browser to create

a Document Object Model (DOM), which is an application

programming interface for client-side programming languages

to manipulate the received HTML and display the parsed

model to the user [19]. Concretely, this allows modern web

applications to use JavaScript to manipulate the initial HTML

tree of the received document. This enables additional methods

of navigating and updating the information of web applica-

tions without the user having to navigate to other HTML

documents [11]. This is accomplished by allowing JavaScript

to programmatically perform asynchronous HTTP requests,

Asynchronous JavaScript and XML (AJAX), in order to either

send or retrieve information following manipulation of the

DOM [20].

These features, in addition to other capabilities of modern

browsers not described in this article, have made it increasingly

difficult to ensure the features are only available in contexts

that meet a minimum security level [21]. Following this, the

specification of Secure Contexts was introduced, which is a

method for controlling the security level of actions by the

browser on behalf of the web application’s content. This means

that certain aspects of the actions performed by the browser

are conducted in an isolated sandbox environment, and certain

actions can be restricted. As an example, a document served

over a secure and encrypted connection is not allowed to

reference other resources served using an insecure and un-

encrypted protocol. Parsing content of the web applications

is an ever-changing process that evolves over time, causing

modern browsers and their underlying browser engines to

become applications spanning millions of lines of code. The

implementation of new browsers engines for parsing content

is, therefore, a costly and often infeasible process in the design

of a crawler.

Historically, this left designers with the choice of either

partial parsing capabilities, or to use high-level instrumentation

of a web browser. High-level instrumentation of a web browser

typically involves using a web driver, such as Selenium

Webdriver, for programmatically controlling a subset of user-

based features available in the browser [22]. These features

typically include navigating the browser to a certain URL or

interacting with the JavaScript shell.

An alternative to the Selenium solution is PhantomJS, which

is a headless browser allowing for more information to be

extracted from the underlying browser engine [12], [11]. In

comparison, it allows for extracting request and response

information from HTTP. The project has, however, been

suspended, leaving the underlying engine to become obsolete

from modern standards of web browsers.

In the context of Kraaler, the web browser Chrome is used

as an external component for performing the HTTP requests

and parsing of their respective responses during crawling. This

choice stems from the fact that Chrome provides a remotely

accessible application interface to its underlying browser en-

gine, Blink, denoted Chrome Debugging Protocol (CDP) [23].

CDP allows for reading some of the data structures present in

the browser engine during runtime in a structured form, such as

detailed information about requests and responses, and sending

instructions to the browser. Thus enabling the use of the

complex parser contained within the browser engine without

missing information contained within the HTTP protocol and

other types of low-level information contained within the

engine, which is difficult or infeasible in other widely-used

browsers.

Information in CDP is exchanged through a series of

subject-based channels, e.g. the channel of networking is

named Network, and subscribing to the same channel al-

lows for receiving events being published on the channel.

Throughout this article, events published by CDP will be

following the notation of <channel>.<event>, so in

the case of Network.requestWillBeSent, Network
refers to the channel which sends requestWillBeSent
events. These events are published to their channel as

JSON objects containing information related to the event,

e.g. Network.requestWillBeSent contains information

about a request that Chrome is about to initiate. The entirety

of events, across of all channels, can be seen as a structured

log of the captured behavior in Chrome. Instructions pushed

to channels follow the same notation, e.g. Page.navigate
will navigate the active window to a certain URL contained

in the payload. CDP defines the concept of a page, describing

the situation of when the browser navigates to a URL using

the address bar. As previously described, this will perform an

HTTP request, for which the response is parsed and can lead to

155



subsequent requests being executed as a background activity.

Kraaler inherits the concept of page, as illustrated in Figure

1, and defines a page to include: a series of HTTP requests

and responses, the appearance of the web application in the

browser, the JavaScript shell of the given web application, and

other information described in Section V. In addition to the

concept of pages, the concept of action is introduced to group

a request with its respective response, or the connection error

returned by the browser, when trying to perform the request.

IV. OVERVIEW

Kraaler has been implemented in the programming language

of Go. Go was chosen due to its native support for paral-

lelization primitives and its ability to compile statically-linked

binaries for multiple platforms. The code is open-source with a

GNU GPLv3 license and accessible in a git repository, hosted

on GitHub1. Running the implementation depends on Chrome

or Docker being available in order to either use or install

Chrome.

Internally, Kraaler consists of two components, controller

and worker, that are responsible for interacting and orches-

trating a set of external components, as illustrated in Figure 2.

Controller is responsible for communicating and orchestrating

the parallel crawling process, conducted by a pool of workers

while publishing their results to the external data stores.

Each worker is responsible for conducting crawling tasks and

orchestrate their individual instance of Chrome.

A. Controller

The primary role of the controller is to maintain the parallel

crawling process. The controller will continuously push tasks

to the next available worker in the pool and keep the set of

workers occupied with tasks until no new task is available.

Tasks become available as a sampler continuously samples

URLs from a set of known URLs. Initiating a crawling process

thereby requires the set of known URLs to be populated with

some amount of URLs. Populating this set is done by parsing

a set of domains or URLs to the controller, as it is being

instantiated.

A sampler is a module for containing the mechanism

for prioritizing which, and when, known URLs should be

transformed to tasks. In order for a sampler to conduct this

prioritization, it is exposed to the current set of known URLs

and timestamp of their most recent crawl, at the time of

sampling. Under these conditions, users of Kraaler are capable

of implementing new samplers that encapsulate a prioritization

strategy suitable for their respective use cases. Currently, there

are two samplers implemented in Kraaler, a uniform sampler,

and a domain-pair sampler. As tasks are being completed,

pages are returned from the pool of workers to the controller,

and it starts two actions: storing the information of the page

and pushing newly found URLs to the pool of known URLs.

A page’s textual and numeric properties are by default

stored in a relational database, while the byte-based properties

1https://github.com/aau-network-security/kraaler

are stored on the file system in a structured form and refer-

enced in the database. Schemes and data structures of the re-

lational database are covered in more detail in Section~V. The

byte-based properties include response bodies and screenshots.

For certain applications, storing all byte-based information can

be too extensive and unnecessary. To address this, Kraaler

allows for restricting information stored, through a set of

modules that modify a page received from a worker before

being stored. Currently, Kraaler only has one module, that

deletes response bodies of a certain content type for a page’s

actions. This leads to the functionality of restricting byte-

based information contained in the following data, as empty

response bodies are not stored. An example of a use case for

this module is to restrict response bodies stored to only be

text-based by deleting response bodies for which their content

type is not prefixed with text. Additional modules can be

implemented by users of Kraaler, for further controlling and

restricting information being stored in the resulting data set of

a crawl.

For obtaining a continuous crawling process, URLs found in

the response bodies are by default added to the pool of known

URLs. However, if it is desired to have a discrete crawling

process or filter certain URLs, it is possible to control which

URLs are added to the pool by assigning a URL filter.

B. Worker

The worker component is responsible for controlling the life

cycle of a single Chrome instance, while also interacting with

its instance through CDP. Problems involved in controlling

the life cycle of Chrome is covered in more detail in Section

VI. The interaction spans across three CDP channels: Page,

Runtime, and Network.

Using the Page channel, a worker will use

Page.navigate for sending instructions to navigate

the browser window to a specific URL. The worker will

use the event Page.domContentEventFired for

determining when the initial document has been parsed

and loaded. When this event has been received, the worker

attempts to capture one or more screenshots through the

instruction Page.captureScreenshot, for which each

capture is conducted a configurable amount of seconds after

the DOM is loaded.

The Runtime channel is used for the event

Runtime.consoleAPICalled in order to capture

console output from the JavaScript shell of the given page,

e.g. debugging messages used by web developers.

Most of the information obtained by Kraaler is from

the Network channel, which covers a variety of network

events. Network.requestWillBeSent is an event being

published when a page is about to send a HTTP request.

The event covers a variety of information, but Kraaler saves

the HTTP request included in the event and the initiator

of the given request. Initiators defined by CDP are parser,

script, preload, SignedExchange, and other. Kraaler inherits

and expands upon this definition by introducing additional

initiators, determined by request information, namely: redirect

156



Controller

send task

receive page

N
et

w
or

k

Ru
nt

im
e

Pa
ge

Worker

Google Chrome

URLs

SQL Files

push URL
store page

sample URL

Fig. 2. Component overview of Kraaler.

and user. The redirect initiator stems from the fact that Kraaler

expands a chain of HTTP redirects to become a series of

individual requests, while CDP assumes a request is tied to

a response body. This means that if a requested resource is

located on a certain URL, it will respond with one or more

redirects before receiving a response body, then CDP inherit

these into the same request, except that by HTTP it is a series

of requests. Introduction of the user initiator was done to

improve clarity of the generic initiator other, by marking user-

initiated requests, such as the initial HTTP request performed

by a page navigating to an URL. For gathering the response

of a request, the Network.responseReceived event is

published, containing the HTTP response for the request.

The Network.responseReceived event just include the

metadata of the response. In order to obtain the response body,

the instruction Network.getResponseBody is sent.

The events received across these channels are observed

between the initial Page.navigate instruction and after the

Page.captureScreenshot instructions has completed.

Lastly, the information from these events are saved in the

internal data structure of a page, being the result of a crawl.

V. DATA STRUCTURE

Creating value from a crawling process requires infor-

mation related to the crawled content to be available for

post-processing. In Kraaler, this is conducted by having the

controller store the pages it receives in a relational database

and on the file system. The choice of relational database in

Kraaler is SQLite, which provides efficient reads while the

data can be contained in a single file. With data available

in a single file, it eases data transfers to other computation

environments.

Having two types of data stores allows for separating

byte-intensive information, such as screenshots and response

bodies, from contextual information. Storing of screenshots

in Kraaler is structured in a configurable directory structure

using screenshots/<domain>/<id>.png, for which

domain is the domain of hosting the page visualized

and id being a random unique identifier. Response bod-

ies are stored in a separate directory with the structure of

bodies/<hash>.<ext>, with hash being the SHA256

hash of the body and ext being a determined file extension

based on the content type of the body. Storing every response

body can yield to a substantial amount of data, causing data

sets to become overwhelmingly large in size. Kraaler provides

a set of modules that can filter or change the behavior of

storing response bodies, namely a compression module and a

filter module. The compression module allows for using gzip

to compress every stored response body to reduce the data set

size. Additional measures to reduce the size of the response

bodies include using the filter module to reduce the set of

saved response bodies to only a certain set of content types.

Contextual information being stored in the database can

be seen in Table I. Entities are shown using the following

notation:

Some entity ← 0..∗ Parent entity
In this example the notation reads as: Parent entity has zero

or more (0..∗) Some entity.

In order to make the underlying database efficient for

analysis purposes, a set of database design principles from

online analytical processing (OLAP) has been adapted in the

design of the database scheme [24]. In Kraaler, the OLAP

snow-flake scheme is used and provides efficient storage in

terms of the size used by the database and reading speeds for

database operations.

VI. ORCHESTRATION

Communication with external components, namely Chrome,

is a fundamental part of the crawling process of Kraaler.

The CDP service of Chrome is a central dependency that

would interrupt the crawling process, in case of its absence.

Ensuring the availability of the service is inherently difficult,

as its presence can only be observed from an operating system

perspective or by interacting with it.

Experience gained from implementing Kraaler made it clear

that the service could become unavailable or unusable. This

led to a set of scenarios, that were difficult to differentiate

from external observations, such as: external web servers being

unresponsive, web servers replying slowly, or the instance of

Chrome being in an unexpected state.

These scenarios could lead to a worker becoming unable

to continue crawling, and drove the design of increased fault

157



TABLE I
PROPERTIES OF DATA STRUCTURE

Property Description

Page Browser resolution Resolution used by the browser

Navigated time Unix time nanoseconds of when a page is request

Loaded time Unix time nanoseconds of when a page’s DOM is loaded

Terminated time Unix time nanoseconds of when a crawl of page is complete

Page connection error Possible connection error of page

Console output ← 0..∗ Page Sequence Index of the console.log message for the page

Origin Position of JavaScript call using console.log
Message Message printed by console.log

Screenshot ← 1..∗ Page Time taken Unix time nanoseconds of when screenshot was captured

Path Filesystem path to screenshot file

Action ← 0..∗ Page Parent of action Possible previous action causing this action

Request method Method used for HTTP request of action

Protocol Protocol used for the action

Initiator The type of initiator initating the action

Status code Status code of the action’s HTTP response

Connection error Possible connection error of the action

Host ← 1 Action Apex domain Domain without subdomains

Top-level domain Top-level domain

IPv4 IPv4 Address of domain being resolved

Name servers Authoritative name servers of domain

URL ← 0..∗ Action Scheme Scheme used within the URL

User User field of URL

Host Host contained within the URL

Path Path of URL

Fragment Fragment used in URL

Query Query string of URL

Response Header ← 0..∗ Action Key Key field of response header

Value Value field of response header

Request Header ← 0..∗ Action Key Key field of request header

Value Value field of request header

Security Details ← 0..1 Action Secure protocol Secure protocol used by the given action

Certificate key exchange Type of key exchange used by action

Certificate issuer Issuer of the certificate used in the action

Certificate cipher Certificate cipher used for action

Certificate san list San list of certificate used by action

Certificate subject name Subject name of certificate used for action

Certificate valid from Unix time nanoseconds of validation start of cert. for action

Certificate valid to Unix time nanoseconds of validation end of cert. for action

Response Body ← 0..1 Action Browser MIME type MIME type of body, determined by the browser

Worker MIME type MIME type of body, determined by the worker

Hash SHA256 hash of the response body

Size Size, in bytes, of response body

Compressed size Gzip compressed response body size in bytes

Path Path to file containing response body

tolerance. Measures for increasing the fault tolerance, and

included in the orchestration of external components, are:

adding timeouts for crawls, release of unresponsive resources,

isolation of Chrome instance and designing for errors.

Timeouts are a time-based threshold measure for defining

and reacting to unexpected behavior in an application. They

are typically defined by having a time limit that describes

the maximum allowed time a certain process is allowed to be

spending for processing. For Kraaler this mechanism is used

internally within each worker, timing the process responsible

for sending instructions and receiving feedback from CDP. In

case of a timeout, a page with an internal connection timeout

error is returned to the controller.

Following the case of a timeout, the resources of the

asynchronous process, that was unable to complete on time,

is not guaranteed to be freed and can be locking resources.

In Kraaler, we explicitly ensure to inherit an idiomatic design

pattern for solving this, while also restarting the instance of

Chrome. This restart is done to ensure that the instance of

Chrome is cleared from its potential faulty state, by returning

it to the predictable initial state.

Our recommended method of running the external Chrome

instances is by letting Kraaler communicate with the Docker

daemon. This method allows for spawning Chrome instances

in an isolated run time scope while controlling the resources

available to them. The isolation ensures that the Chrome

instances are unable to interfere with each other, as their run

time scope is independent. Kraaler will by default constrain the

158



spawned Chrome instances to 756MB, which from experience

has been found sufficient for single page browsing.

Restarting the Chrome instance of a worker can be costly in

terms of wasted crawling time, and should only be considered

a last resort. In order to reduce the number of unnecessary

restarts of the Chrome instance, a set of errors returned by

CDP are provided corresponding recover mechanisms. This

allows workers to cheaply recover from errors such as CDP

connections timeouts, Page.navigate timeouts, and more.

However, in the case of an error without a defined recover

mechanism, the Chrome instance is restarted to ensure no

present side effects.

VII. EVALUATION

Correctness is an essential attribute for a data set in order

to be used for future analyses. In the setting of Kraaler, the

data is collected by observing external web servers, for which

their underlying design and behavior is unknown. Thereby in

order to increase confidence in collected data being correctly

crawled and stored, this functionality is evaluated against

known web servers, for the sake of predictability. A set

of automated end-to-end tests are designed, for which each

individual test hosts a web server with distinct behavior. The

hosted web servers are then crawled by Kraaler, following

observations of changes in the database and file system. These

changes are then compared against an expected change, to

ensure the expected behavior of the implementation.

The set of test cases does, however, not validate the value

of the browser engine’s parsing capabilities in a real-world

setting, as the tested web application might not be repre-

sentative of that population. In order to validate the value,

Kraaler was set out to crawl a uniform sample of Alexa Top

1M, while being restricted from pushing new URLs to the

pool of URLs. This crawl was conducted on a single machine

running eight worker instances and resulted in 8156 pages

and 331561 actions. The influence of the browser engine’s

parsing capabilities, in terms of HTTP requests being initiated

by the browser engine, can be seen in Table II. User-oriented

initiations, i.e. those started by Page.navigate, are filtered

out to focus only on the ones conducted by the browser engine.

TABLE II
OVERVIEW OF NON-USER INITIATORS OF ACTIONS FROM ALEXA TOP 1M

PAGE CRAWLS.

Initiator Page actions Body size (kB)

μ (σ) μ (σ)

parser (n = 266819) 34.34 (25.31) 41.04 (125.77)

script (n = 46131) 5.94 (6.39) 46.77 (96.53)

redirect (n = 4512) 0.58 (0.96) 107.00 (161.40)

other (n = 2399) 0.31 (1.62) 24.96 (83.15)

In comparison to a naive crawler, one which just fetches a

given response body without parsing it, a substantial amount

of requests would not be conducted. The initiators, parser
(μ = 34.34) and script (μ = 5.94), account for a significant

amount of additional requests compared to a naive crawler.

These initiated requests are a representation of the sum of

the parsing capabilities of the browser engine, and can be

expressed as an upper bound measure for requests initiated

by parsing for user-perspective web crawling. The total size

of the response bodies for these subsequent HTTP requests

represent 95.8% of the total amount of bytes for response

bodies in the crawl, leaving the root documents to 4.2%.
Browsing the size of subsequent response bodies of pages,

in relation to their content type, can indicate the amount of

information being carried by certain technologies. The amount

of information being carried by certain types of technologies

can suggest the importance of certain language parsers in a

crawler setting. This information, carried across pages, for

the ten most frequently used MIME types across pages, is

illustrated using a cumulative distribution function in Figure 3.

JavaScript with its three MIME types (application/x-javascript,

application/javascript, text/javascript) is responsible for a large

degree of the bytes across the pages crawled. We suspect it

might be due to popular domains using complex user interfaces

and relies on JavaScript-based front-end frameworks, which

take up a certain byte volume.

Fig. 3. Cumulative distribution function of bytes per page for the ten most
frequent content types.

The usage of technologies, in terms of request frequency and

byte volume, vary significantly, e.g. parser actions σ = 25.31,

and parser bytes σ = 125.77. This might suggest that pages

rely on a distinct set of linked dependencies, due to the present

variance in amount actions and their respective byte size for

pages. This variance could also prove useful for identification

of segments that carry meaning for a given problem domain

that attempts to classify web applications. As an example,

identification of web applications hosting malicious activities

could be accomplished under the assumption that malicious

web applications differentiate in their interlinked structure and

usage of certain dependencies. However, this example and

other applicabilities of the data set are for future research to

examine, in addition to exploring the protocol-based informa-

tion also contained within the data set.

159



VIII. CONCLUSION

In this article, we have presented the design of a crawler,

named Kraaler, that uses the Chrome Debugging Protocol for

parallelized crawling, using a modern browser engine, while

obtaining detailed information from the HTTP protocol usage.

Follow this, a design for storing this detailed information was

covered, allowing the stored data efficiently read and available

for data analysis.

The challenges of interacting with external components,

such as a web browser, was presented in addition to the

measures we have taken in order to solve them and provide

orchestration. Throughout the implementation of our solution,

the methods used for determining its correctness has been

described.

Following the impact of the obtained parsing capabilities,

from the browser engine, for the request frequency and size

of the information collected throughout a crawling process.

Demonstrating that the HTML parser (μ = 34.34) and the

JavaScript interpreter (μ = 5.94) accounted for a significant

amount subsequent HTTP requests for a page visit, for a subset

of crawled Alexa Top 1M domains. The size of these response

bodies, in terms of bytes, accounted for 95.8% of the total size

of response bodies that was crawled.

We suggest that data sets collected using Kraaler could

potentially be used for a variety of applications that seek to

conduct statistical analysis of web applications.

IX. ACKNOWLEDGEMENTS

With the Chrome Debugging Protocol being essential for

this work, our gratitude towards the Chromium Developer

Team cannot be understated. A great appreciation should be

sent to Mathias Frederiksson, for his wonderful CDP Go pack-

age. I (Thomas) would like to thank my first-born daughter,

Joanna, for the ability to be born in a timely fashion to cheer

for her dad throughout his long working days, required to

complete this article. Likewise, her caring mother, Maria, for

indulgently accept my absence.

REFERENCES

[1] Manish Kumar, Rajesh Bhatia, and Dhavleesh Rattan. A survey of web
crawlers for information retrieval. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2017.

[2] Allan Heydon and Marc Najork. Mercator: A scalable, extensible web
crawler. World Wide Web, 2(4):219–229, 1999.

[3] Marco Vieira, Nuno Antunes, and Henrique Madeira. Using web security
scanners to detect vulnerabilities in web services. In 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks, page nil,
6 2009.

[4] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners.
2019.

[5] Google. Chromium Blink. https://chromium.googlesource.com/chromium/blink,
2013.

[6] KDE. WebKit. https://svn.webkit.org/repository/webkit/, 1998.
[7] Mozilla. Mozilla Gecko. https://hg.mozilla.org/mozilla-central/, 1998.
[8] StackOverflow. Developer Survey Results 2018.

https://insights.stackoverflow.com/survey/2018 Last accessed on
2019-13-04, 2018.

[9] GitHub. GitHub Octoverse. https://octoverse.github.com/projects Last
accessed on 2019-13-04, 2018.

[10] Statista. Global market share held by leading desktop
internet browsers from January 2015 to December 2018.
https://www.statista.com/statistics/544400/market-share-of-internet-
browsers-desktop/ Last accessed on 2019-13-04, 2018.

[11] Arie van Deursen, Ali Mesbah, and Alex Nederlof. Crawl-based analysis
of web applications: Prospects and challenges. Science of Computer
Programming, 97(nil):173–180, 2015.

[12] Ariya Hidayat. PhantomJS - Scriptable Headless Browser.
http://phantomjs.org/, 2010.

[13] Joachim Hammer and Jan Fiedler. Using mobile crawlers to search
the web efficiently. International Journal of Computer and Information
Science, 1:36–58, 2000.

[14] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna.
Bubing. In Proceedings of the 23rd International Conference on World
Wide Web - WWW ’14 Companion, page nil, - 2014.

[15] Clement de Groc. Babouk: Focused web crawling for corpus compila-
tion and automatic terminology extraction. In 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent
Technology, page nil, 8 2011.

[16] Mydeco. Scrapy: a fast high-level web crawling & scraping framework
for Python. https://scrapy.org/ Last accessed on 2019-13-04, 2008.

[17] Scrapinghub. Portia: Visual scraping for Scrapy.
https://github.com/scrapinghub/portia Last accessed on 2019-13-04,
2014.

[18] Reiner Kraft and Jussi P. Myllymaki. System and method for enhanced
browser-based web crawling, 2000.

[19] Ian Jacobs, Chris Wilson, Jonathan Robie, Mike Champion, Arnaud Le
Hors, Robert S Sutor, Scott Isaacson, Steven B Byrne, Gavin Nicol,
and Lauren Wood. Document object model (DOM) level 1. W3C rec-
ommendation, W3C, October 1998. http://www.w3.org/TR/1998/REC-
DOM-Level-1-19981001/.

[20] Julian Aubourg, Anne van Kesteren, Hallvord Steen, and Jungkee Song.
XMLHttpRequest level 1. WD not longer in development, W3C,
October 2016. https://www.w3.org/TR/2016/NOTE-XMLHttpRequest-
20161006/.

[21] Mike West. Secure contexts. Candidate recommendation, W3C, Septem-
ber 2016. https://www.w3.org/TR/2016/CR-secure-contexts-20160915/.

[22] Sagar Shivaji Salunke. Selenium Webdriver in Java: Learn With
Examples. CreateSpace Independent Publishing Platform, USA, 1st
edition, 2014.

[23] Chrome Debugging Protocol. https://chromedevtools.github.io/devtools-
protocol/, 2019. [Online; accessed 28-March-2019].

[24] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehous-
ing and olap technology. SIGMOD Rec., 26(1):65–74, March 1997.

160


