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Abstract—The spread of handheld devices has led to the
unprecedented growth of traffic volumes traversing both local
networks and the Internet, appointing mobile traffic classification
as a key tool for gathering highly-valuable profiling information,
other than traffic engineering and service management. However,
the nature of mobile traffic severely challenges state-of-art
Machine-Learning (ML) approaches, since the quickly evolving
and expanding set of apps generating traffic hinders ML-based
approaches, that require domain-expert design. Deep Learning
(DL) represents a promising solution to this issue, but results in
higher completion times, in turn suggesting the application of the
Big-Data (BD) paradigm. In this paper, we investigate for the first
time BD-enabled classification of encrypted mobile traffic using
DL from a general standpoint, (a) defining general design guide-
lines, (b) leveraging a public-cloud platform, and (c) resorting to a
realistic experimental setup. We found that, while BD represents
a transparent accelerator for some tasks, this is not the case for
the training phase of DL architectures for traffic classification,
requiring a specific BD-informed design. The experimental setup
is built upon a three-dimensional investigation path in the BD
adoption, namely: (i) completion time, (ii) deployment costs, and
(iii) classification performance, highlighting relevant non-trivial
trade-offs.

Index Terms—traffic classification; mobile apps; big data; deep
learning; Android apps; iOS apps; encrypted traffic.

I. INTRODUCTION

Traffic Classification (TC) consists in inferring the appli-

cation (or service) generating the observed network traffic.

Currently, TC is both fueled and challenged by the huge

and increasing amount of mobile traffic generated by the

widespread use of handheld devices (mobile data volume has

grown by ≈ 88% only between 2017 and 2018 [1]). Hence, the

interest in classifying mobile traffic is raising nowadays, for

the purpose of e.g., differentiated billing, personalized adver-

tising, cyber-crime detection and prevention, while extracting

valuable profiling information in the process [2].

Over time, the popular adoption of dynamic ports and

encrypted protocols (clustered to a few well-known ports) [3],

has increasingly challenged accurate TC, crippling traditional

port-based and Deep Packet Inspection (DPI) techniques [4],

still effective only in closed-world scenarios (e.g., enterprise

networks) enabled by man-in-the-middle proxies [5]. In the

mobile-traffic context, achieving targeted TC performance is

further undermined by a successful multi-platform framework-

based development and distribution model [6], implying (i) the

embedding of common (third-party) network services to im-

plement app features; (ii) the quick proliferation of (similar)

apps to discriminate from; (iii) a fast-paced update cycle of

apps, development frameworks, and operating systems.

For TC all these characteristics impair app-fingerprints

collection, definition, and update, also possibly reducing the

number of training samples available per app, due to limited

time between updates. While classifiers based on Machine

Learning (ML) have been proposed to cope with the shortcom-

ings of port-based and DPI techniques, they resulted unable to

keep the pace of mobile network traffic evolution [7, 8]. The

main reason is that standard ML classifiers are underpinned by

the design of handcrafted (i.e. domain-expert driven) features,

which in TC context usually correspond to statistics extracted

from the sequence of packets [7] or exchanged messages [9].

Unfortunately, such process is time-consuming, unsuited to

automation, and thus unsuccessful in practical mobile TC.

Recently, a cutting-edge subset of ML techniques, known

as Deep Learning (DL) [10], has emerged as the springboard

toward the fulfillment of high performance in the dynamic and

challenging (encrypted) TC context, allowing to train classi-

fiers directly from input data by automatically distilling struc-

tured and complex feature representations [10]. Accordingly,

several works recently appeared tackling TC via DL [11–14],

but such approach resulted thorny, and generally less well

understood than standard ML [15]. Indeed, DL algorithms may

generate learning networks with a very dense and complex

structure [10], whose training may result in completion times

orders-of-magnitude higher than those acceptable according to

the constraints of the specific application domain.

The constant repetition of tasks requiring high computa-

tional power and strict time constraints is the target of Big-

Data (BD) frameworks. Hence, leveraging BD parallelization

potential is sought to be a solution to DL-based TC. However,

although BD framework embodies a transparent accelerator to

separable computation tasks (e.g. the test phase of inference

systems), this is not the case for non-naturally-parallelizable

ones, like the optimization in DL training procedure [16].

This motivated our research, in which for the first time
in literature we investigate and experimentally evaluate the
adoption of DL-based network traffic classification strategies
as supported by BD frameworks. In more details, pursuing our

analysis along three different (but inter-playing) dimensions—

i.e. classification performance, training completion time, and

costs—we designed, deployed, and evaluated state-of-art DL

networks (1D-CNN and LSTM) for classifying encrypted

mobile traffic via BD. In our experimental campaigns, we
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ran classification tasks adopting the BD platform of a public-

cloud service provider and leveraging human-generated mobile
and encrypted traffic datasets. This provides results related to

popular and reproducible setups as well as to real-world traffic.

Accordingly, our work is able to deliver a picture detailed at a

depth never achieved before, producing interesting outcomes

and useful guidelines for both researchers and practitioners

willing to harvest the benefits deriving from the joint adoption

of DL and BD in network traffic analysis.

The rest of the paper is organized as follows. Sec. II briefly

reviews the existing literature on ML/DL-based TC and Big

Data network analytics; Sec. III describes the reference Big

Data-enabled DL framework for mobile TC, focusing on key

aspects pertaining to the design phase; Sec. IV describes the

experimental evaluation setup considered, with corresponding

results discussed in Sec. V; Sec. VI ends our work with

conclusions and future avenues of research.

II. RELATED WORK

In this section we position our contribution against both

(a) the existing proposals for mobile TC classification based

on ML/DL and (b) the available BD-based solutions to address

networking issues.

Various works have tackled mobile TC in recent years,

mostly via standard ML techniques and often under encrypted-

traffic assumption [7, 8]. Also, a number of proposals have

lately emerged proving the appeal of DL to Internet TC. How-

ever, for the latter only initial design attempts are provided,

all related to either non-mobile [12–14] or non-encrypted
scenarios [11] (except for our previous work [15]).

In line with the interest of the scientific community, many

works have employed BD solutions in the broad field of

networking to capitalize the value of network data, notwith-

standing the constraints they impose. These works mostly fall

in the area of either network security [17–19], or mobile and

social networks analytics [20, 21], and (almost) all benefit

from distributed computations aimed at reducing the time

required for training ML models. Instead, only a few works

specifically leveraged BD solutions to focus on network TC
via ML [22, 23] (with only [23] tackling the mobile case).

Recently, a few frameworks have bloomed for leveraging

BD infrastructures to train (and run) DL algorithms in different

flavours. However, only a very limited set of works has already

adopted BD for addressing networking issues through DL

algorithms [21, 24]. Alsheikh et al. [21] focused on an activity

recognition based on mobile-device data and evaluated the

proposed setup in terms of both speedup efficiency and accu-

racy. Differently, Abeshu and Chilamkurti [24] envisaged DL

adoption in fog-to-things communication scenario for attack

detection. Nonetheless, all these works mainly focused on how

BD frameworks are able to reduce the completion time of the

DL heavy tasks and—to the best of our knowledge—none

of them evaluated the detrimental effect of distributing data-

analysis tasks across several (loosely coordinated) workers.

To the best of authors’ knowledge, (i) no work has per-

formed TC by means of BD-enabled DL classifiers to date.
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Fig. 1: Scheme for the proposed BD-enabled DL mobile TC solution.

Equally important, (ii) the challenging scenario of encrypted

mobile traffic data has been only touched tangentially within

the BD framework, even considering (classic) ML techniques.

Finally, (iii) the validation leveraging human-generated traf-
fic—that is of paramount importance toward real-world imple-

mentations in mobile contexts—has been often overlooked.

III. DESIGN OF BD-ENABLED DL-BASED MOBILE TC

A basic scheme for the proposed BD-enabled DL mobile

classification solution is reported in Fig. 1. Its related design

choices can be categorized in those strictly concerning the TC

workflow (that are BD-independent) and those related to the

training mechanisms enforced by the DL architectures when

deployed on a BD framework (that are BD-dependent, by

definition). The former are refreshed in Sec. III-A, while the

latter are discussed in Sec. III-B.

A. DL-based Mobile TC Workflow

In order to design a DL system for TC, milestone design

choices should be made about: (i) the traffic object, i.e. the

traffic aggregate atom which induces the segmentation crite-

rion; (ii) the type(s) of input data, i.e. the number and the

sets of input selected from each traffic object to feed the DL

architecture; (iii) the DL architecture (e.g. the composition

instance of elementary learning layers) coping with input

constraints originating from the design choices concerning the

type of input data. We briefly discuss these aspects in the

following, pointing to [15] for a more detailed analysis.

The traffic object defines how raw traffic is segmented into

multiple discrete units. Most related works considered either

flows or biflows [4], with the latter choice leading to better

performance. In detail, a flow is a stream of packets sharing

the same 5-tuple (i.e. source IP and port, destination IP and

port, and transport-level protocol) taking into account their

directions. Differently, in a biflow the source and destination

(IP, port) pairs can be swapped. Another appealing choice is

the so-called Service Burst (SB), recently proposed in mobile

TC [7], and defined by aggregating packets with an inter-

packet time smaller than a given “burst” threshold and then

grouping those that belong to biflows with the same transport
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protocol and destination (IP, port). Still, SBs have not seen

their direct application to security and policy enforcement so

far, as opposed to established (bi-)flows.

The next step after segmentation is to extract for each

TC object the corresponding unbiased input set(s), especially

those suited for “early” TC [4] (i.e. using only the first portion

of traffic aggregate to take a decision). The most relevant types

of input data [15] of a generic TC object ingested by DL

architectures may be roughly grouped within two categories:

(i) the first Nb bytes of the payload at transport level or

higher [11, 12]; (ii) selected informative data fields of the first

Np packets [14]. In the first case, the payload data being fed to

the DL architecture is represented in binary format, arranged

in a byte-wise fashion and normalized so as to constrain it

within [0, 1]. In the second case, the type of input data is

represented by selected protocol fields (not pertaining to the

explicit inspection of encrypted payload, e.g. the packet size)

of the first Np packets.1

Finally, the DL architectures are topped with a softmax

layer providing inference among L possible apps, and are

obtained by composition of elementary layers [10], whose

common choices are dense, convolutional, pooling, and re-
current layers. Dense layers are the simplest atoms of DL

architectures, consisting of a linear transformation and an

entry-wise activation. Convolutional and pooling layers are

the basic blocks of Convolutional Neural Networks (CNNs),

made of a set of translation-invariant filters (to extract fea-

tures of a certain region) and down-sampling intermediate

representations (to reduce complexity and mitigate overfitting),

respectively. Recurrent layers present “loopy” unit connections

and have in Long Short-Term Memory (LSTM) and gated

recurrent unit their most popular variants: they are in charge

of “recalling” values (via a state vector) over time and accept

as input a vector sequence, whereas they output either the final

state or its entire time-evolution. An exhaustive evaluation of

the DL architectures is out of the scope of this work. We refer

to [15] for their selection, the choice of the parameters, and

an in-depth discussion of the related aspects.

B. Training DL-based Mobile TC architectures on Big Data

The learning process for DL architectures may be slow and

computationally demanding, since they consist of many hidden

layers, millions of parameters and require a high number of

training samples. BD solutions are meant to offer a way to

address these issues, providing processing frameworks able

to parallelize computation tasks by splitting the information

base and distributing it across N cooperating working nodes
(workers) coordinated by a single central node (master).

Specifically, BD-enabled DL relies on data parallelism and

federated learning [16] to reduce the overall training time of

the considered DL architecture, by capitalizing the peculiarity

of BD paradigm. In essence, the workers w1, . . . , wN are given

N distinct partitions D1, . . . ,DN of the training set D to

1We remark that instances longer (resp. shorter) than the considered fixed-
length (Nb or Np) data inputs are truncated (resp. zero-padded) to the
designed length of bytes (Nb) or packets (Np).

learn independent replicas of the (same) given DL architecture.

Clearly, deploying a higher number of workers allows to

enhance the parallelization (the higher N , the smaller the size

of the partitions D1, . . . ,DN assigned to the workers). On

the other hand, each worker is able to learn only a “data-

partial” DL model, being the outcome of its limited-view

training partition, in principle. Additionally, since learning

is based on (sophisticated versions of) stochastic gradient

descent, the process of the nth worker is naturally iterative and

performed over Nepo “epochs”, composed of different mini-

batches (scanning the whole Dn), with the model at time t
completely specified by the parameter set θn

t .

In federated learning different workers are federated by the

master to optimize a central DL model (specified at time t
by the parameter set θ̄t) exploiting their DL model replicas

by minimizing a single (common) loss function L(·) (for TC

a categorical cross-entropy [10]) and implicitly capitalizing

the whole training set D. This is achieved by periodically
synchronizing the state of each worker with the (centralized)

view of the master, whose model is incrementally updated

leveraging the information provided by the workers. The

master is in charge of the coordination mechanism and has the

responsibility to incorporate model updates periodically com-

ing from the workers (worker commits), and to serve requests

of the most updated central model (worker pulls). Between

subsequent commits each worker learns independently on its

training partition. The worker update frequency F at which

the workers execute a commit is thus a design parameter. Such

frequency ranges from one update per mini-batch to exchanges

after several epochs, the higher (resp. lower) values leading to

tighter (resp. looser) coupling.

Additionally, depending on the communication protocol
governing the exchange of commits/pulls between the workers

and master, BD-enabled DL approaches can be categorized

into two main groups: synchronous and asynchronous. In the

former case, commits from the workers are aligned through

a synchronization barrier, and the pull operation puts all the

nodes in the same state θ̄t+1 after the master aggregation. In

the latter case, commits from the workers are handled in a

first-come first-served fashion by the master, which provides

the updated central model θ̄t+1 based on the message from

the worker. Although the latter solution can incur the side-

effect that some workers are computing (and committing)

updates based on old central-model states (because the master

incorporates updates into the central model asynchronously),

it is more time-efficient because it does not include locking

mechanisms (that make all workers wait for the slowest

one: the so-called straggler issue) and works well also with

heterogeneous hardware.

Lastly, the federated-optimization algorithm is another

degree of freedom of the BD DL-based TC system proposed.

It is defined by both local workers computation and master

update policy and is tightly coupled to the communication pro-

tocol choice. Precisely, for each update of the central model,

in the synchronous (resp. asynchronous) case the master uses

all the commits at once (resp. one commit at a time).
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Accordingly, the adoption of BD framework to support the

learning process of DL architectures is expected to greatly

reduce the time required for its training on the whole D.

However this benefit comes at a cost: since no node has the

chance of working on the whole dataset, the DL architecture

resulting from this training procedure represents a sub-optimal
solution to the TC problem, exposing performance possibly

worse than that of a centralized solution (with much longer

processing periods but working on the D training set as a

whole). Hence, next section investigates the dependence of DL

training in mobile TC on the non-transparent BD accelerator.

IV. EVALUATION SETUP

In this section we detail the setup designed and adopted for

the experimental evaluation. First, in Sec. IV-A we describe the

mobile TC problems addressed and the corresponding datasets

leveraged for the evaluation. Then, in Sec. IV-B we specify

the BD-enabled DL TC architecture deployed and the tools we

adopted. Finally, in Sec. IV-C we introduce the performance

metrics to investigate the proposed TC system along different

dimensions induced by BD solutions.

A. Classification problems and description of the datasets

Our evaluation resorts to two datasets, either recommended

or produced by a global mobile solution provider2, associated

to different mobile and encrypted TC tasks (a summary is

given in Tab. I), to understand if and how the performance

of the different mobile TC problems are impacted by the

BD infrastructure. These datasets contain traffic from apps

running on both Android and iOS devices (covering the two

most popular mobile OSes), and have been collected by human
users instead of relying on bot-generated traffic, as opposed to

recent works on mobile TC [7]. For the sake of a consistent

assessment of almost all DL-based TC works published so

far [12, 14, 15], we have chosen to operate at the biflow
level. Finally, the ground truth has been obtained by labeling

each traffic trace with the generating app (running each app

separately limited the presence of background traffic).

The first (binary, L = 2) dataset (FB/FBM) was collected in

the ARCLAB laboratory at the University of Naples “Federico

II”. In detail, the capture sessions were run on a Xiaomi Mi5

and refer to either Facebook (FB) or Facebook Messenger

(FBM) traffic data. This dataset allows to evaluate the capa-

bility of the classifiers to discriminate between two apps with

extremely similar fingerprints, for e.g., billing differentiation.

More than 100 users were requested to perform various

activities for both the apps, including login/registration/logged-

use cases (to explore diversity). Overall, the dataset contains

> 34k instances (see Tab. I), with 19.3k (resp. 15.0k) biflows

generated by FB (resp. FBM), with a 56% (resp. 44%) share,

guaranteeing also a good balance between FB/FBM samples.

The second (multi-class, L > 2) dataset (iOS), contains

traffic generated by 45 iOS apps. This dataset was directly

2Due to NDA with the provider we can not report its name, details of its
network, detailed information on the datasets, nor release the datasets.

handled by the solution provider and is here explored for

evaluating TC for e.g. prioritization purposes.

We mention that the traces were generated by users with

different devices and OS/app versions, and were provided

already anonymized.3 Differently from FB/FBM dataset, in

this case we have 1 ÷ 48 traces per app, leading to a non-

negligible class imbalance.

B. Architecture deployment

Herein we detail the experimental setup designed and im-

plemented to evaluate the performance of the DL-based TC

solutions when deployed onto BD architectures.

In line with the strategies usually adopted today by en-

terprises aiming at achieving both technical and economical

advantages, we run all our experimental-evaluation campaigns

onto a cloud platform. In detail, we utilized the services of

Microsoft Azure, one of the market leaders among the cloud

providers. The impact of this decision on our analysis is two-

fold: (i) some of the following deployment choices depend

upon the options commercialized by the provider; (ii) the

adoption of a public-cloud platform puts under the spotlight

the economical expenditure generated by the execution of

DL tasks. Though this choice may place constraints on the

experimental analysis because of the finite budget available, it

allows us to further enrich our study with interesting results

along dimensions other than classification performance, such

as the cost charged to cloud customers for accomplishing

model training tasks (see Sec. IV-C).

All the results discussed in Sec. V have been obtained

leveraging Distributed Keras [16], a distributed DL framework

built on top of Apache Spark4 and Keras5. In details, we

relied on Azure Databricks6, which provides analytic services

based on an Apache Spark environment optimized for DL.

Distributed Keras provides several state-of-art optimization

algorithms (based on data-parallelism and federated learning)

and is claimed to reduce the time spent for training models

with respect to traditional centralized approaches.

Specifically, the inputs for the experimental setup (number

of workers N , worker update frequency F ) were selected

according to budget constraints as well as observed trends,

so as to explore satisfactorily the space generated by all their

combinations. In detail, we consider deployments with the

number of workers ranging from N = 2 to N = 16, while for

F we have considered values from one update per mini-batch

(i.e. ≈ 139 updates per epoch in our experimentation) to one

update every Nepo epochs (i.e. one single update per worker).

Furthermore, the setup of master and worker nodes was

chosen according to the offers of the cloud provider, by

adhering to the default setting which employs the same node

configuration for both the master and the workers. In detail,

general-purpose DS4v2 nodes (8 vCPUs, 28 GiB RAM, 0.698
e/hour) are used in all our experiments, with better-performing

3In detail, ≈ 85% of iOS traces were captured during 2016.
4https://spark.apache.org/.
5https://keras.io/.
6https://azure.microsoft.com/it-it/services/databricks/.
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TABLE I: Datasets for the evaluation of BD-enabled DL architectures. Avg. trace duration is ≈ 5 mins. ET stands for Encrypted Traffic.

Dataset Type #Apps #Traces #Biflows ET OS Version Collection Source Main Aim

� Binary L = 2 > 1100 34.3k 91% Android 6.0.1 May ’17–Mar. ’18 Self-generated@UniNa Billing differentiation

 Multi-class L = 45 419 44.0k 60% 7.0–10.0 Sept. ’14–Jan. ’17 Mobile solutions provider Service prioritization

D32sv3 nodes (32 vCPUs, 128 GiB RAM, 2.456 e/hour)

leveraged for specific analyses, as detailed later.

Finally, the DL architectures selected are those with the

best performance (for each input type, see Sec. III-A) in a

centralized deployment [15]: a 1D-CNN [12] (fed with the

first Nb = 784 payload bytes of the transport level) and an

LSTM [14] (fed with four informative fields7, of first Np = 20
packets in a biflow). These correspond to 5.82M and 52.3k

(resp. 5.86M and 56.6k) training parameters for FB/FBM

(resp. iOS) dataset, respectively. Concerning the optimization

algorithm, we adopted the AEASGD (with Nepo = 90) [16],

being asynchronous and thus able to avoid the straggler issue.

C. Evaluation Metrics

Here we introduce the metrics adopted to evaluate the DL

architectures when deployed on (cloud) BD frameworks. In de-

tail, our experimental analysis resorts to a stable performance-

evaluation setup, based on a stratified ten-fold cross-validation.

Hence, for each of the metrics discussed in what follows,

we report its mean and the standard deviation. Notably, our

experimental evaluation is performed along three distinct di-

mensions: (i) training completion time, (ii) cloud deployment
cost, and (iii) classification effectiveness. We are interested

in investigating the trade-offs existing among these three

intertwined dimensions. The metrics defined and adopted for

each dimension are detailed in the following.

Training Completion Time. Since reducing the processing

time required for a task completion is arguably the major

driver leading to the adoption of BD architectures, we provide

a detailed evaluation of this key aspect, focusing on the

wallclock time T required for completing the training phase
of DL architectures.8 This analysis is of great interest since

mobile TC systems require frequent re-training operations, due

to aging of training data as a result of both app and OS

updates [7, 15]. Precisely, since (distributed) DL training is

performed on multiple epochs [10], we report such information

in a normalized way, as Wallclock Time Per-Epoch (WTPE).

Cloud Deployment Cost. Cloud services are characterized

by pay-as-you-go billing strategies, thus abolishing capital ex-

penditure for configuring and maintain the BD infrastructure.

Accordingly, here we consider the total cost C charged to the

cloud customers for running the processing tasks needed for

training the DL architecture. Specifically, our cost evaluation
function is C = (ρN+ρM )T , where N denotes the number of

workers, ρ (resp. ρM ) the hourly cost for deploying one worker

node (resp. the master), and T the Training Completion Time.

7Packet size, packet direction, TCP window size, inter-arrival time.
8We recall that time reduction trends of testing phase are less interesting,

due to perfect parallelization.

Classification effectiveness. Because BD frameworks do not

represent a transparent accelerator for the training phase of

DL-based traffic classifiers, to evaluate the effectiveness of the

corresponding DL-based TC solutions, the adopted evaluation

metrics include common classification measures [4] such as

the (macro) recall (i.e. the arithmetic average of per-app

accuracies) and F-measure (i.e. the harmonic mean of per-

app precision and recall, arithmetically averaged over all the

considered apps). Finally, we also consider confusion matrices
to identify the most frequent misclassification patterns.

V. RESULTS AND DISCUSSION

Herein we discuss the results of the experimental campaigns

we run deploying the designed system on Azure PaaS to

evaluate its performance against two mobile TC tasks (binary

and multi-class, see Sec. IV-A), along the three evaluation

dimensions (completion time, cost, and classification effective-

ness, see Sec. IV-C). For each of these, we assess the impact

of different design choices such as the number of workers (N ),

the update frequency (F ), and the DL architecture.
Completion Time vs. Number of Workers (N ).
Figs. 2a and 2d show the WTPE for the two considered DL-

based TC architectures on FB/FBM and iOS datasets, respec-

tively, when increasing N from 2 to 16. Herein, the worker

update frequency F is set to one update per epoch. To stress

the overhead incurred by each BD-enabled DL architecture,

we consider the corresponding WTPE T1 needed to run it in

a centralized fashion, i.e. when one worker is in charge of

processing the whole training set. Accordingly, we report the

ideal-WTPE curve, defined as T1/N and corresponding to a

lower-bound on the achievable WTPE.
The results show an intuitive decreasing trend with N for

both TC tasks (with slightly higher WTPE for iOS, in line

with the more complex classification task), thus confirming

the appeal of the BD framework which is able to reduce

the training time up to −91.8% (resp. −88.5%) when a

1D-CNN is used in the case of FB/FBM (resp. iOS), with

respect to an analogous centralized deployment. For example,

with N = 8 workers, ≤ 10s WTPE is required in both

TC tasks. Additionally, the overhead incurred with respect

to the theoretical curve also increases for higher values of

N (i.e. the larger N , the higher the overhead), but remains

negligible. Finally, a direct comparison of the two different DL

architectures shows that the more complex 1D-CNN benefits

more from parallelization with respect to the “lighter” LSTM.
Cost vs. Number of Workers (N ). Figs. 2b and 2e show

the impact of the number of workers (N ∈ {2, 4, 8, 16})

on the training cost of the two considered DL architectures

in line with the pay-as-you-go billing model enforced, when

addressing mobile TC tasks of FB/FBM and iOS datasets,
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(a) FB/FBM WTPE. (b) FB/FBM Monetary Cost. (c) FB-FBM F-measure.

(d) iOS WTPE. (e) iOS Monetary Cost. (f) iOS F-measure.

Fig. 2: Impact of no. of workers on WTPE, Monetary cost, and F-measure for FB/FBM dataset (a, b, and c) and for iOS dataset (d, e, and
f). Both 1D-CNN and LSTM architectures are considered. Average on 10-folds with ±3σ confidence bands are shown.
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(a) Centralized.
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(b) 2 workers.
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(c) 8 workers.
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(d) 16 workers.

Fig. 3: Confusion matrices of 1D-CNN on iOS dataset for centralized case (a) and BD-solution with N ∈ {2, 4, 16} workers (b-c-d) ([%]
in log scale).

respectively (F is again set to one update for epoch). To stress

the overhead cost incurred by BD-enabled DL architectures,

we also report (for each architecture) the ideal-cost curve
corresponding to (ρN+ρM )·(T1/N), i.e. the cost required to

train the DL architecture in the ideal case the BD framework

guarantees perfect parallelization, being a lower-bound on the

achievable cost—with ρM = ρ in our case (see Sec. IV-B).

While the hourly cost for cloud system deployment linearly

increases with N (namely ρ (N + 1)), the resulting total cost

C for completing the training phase is also proportional to

the required time T . As the training time may deviate from

its ideal value as shown in the previous analysis for higher

values of N (e.g. only negligible benefits are achieved moving

N from 8 to 16 when using 1D-CNN for iOS), similarly, the

resulting monetary cost may increase as the decreased training

time does not always match a balanced gain in terms of hourly

cost. Accordingly, while the deployment cost for LSTM (for

both mobile TC tasks) and 1D-CNN (for FB/FBM) almost

saturates for larger values of N , this is not the case for 1D-

CNN for iOS. In the latter case (see Fig. 2e), deploying a larger

number of workers (N = 16) leads to significantly higher costs

(+54.2% with respect to the case N = 8) while the benefit in

terms of reduced training time is negligible (−2.3%).

Classification Effectiveness vs. Number of Workers (N ).
Figs. 2c and 2f report the effectiveness of the two DL

architectures accomplishing binary and multi-class mobile TC

tasks respectively, when deployed on clusters where N ranges

from 2 to 16. Experimental results witness (solid lines) how the

degree of parallelization hinders the classification performance

achieved, with F-measure values significantly decreasing as N
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(a) WTPE. (b) Monetary Cost. (c) F-measure.

Fig. 4: Impact of no. of epochs (reciprocal of worker update frequency) on WTPE (a), Monetary cost (b), and F-measure (c) for FB/FBM
dataset and 1D-CNN (L7-784) architecture. Average on 10-folds with ±3σ confidence intervals are shown.

increases. Accordingly, the worst classification performance is

observed when relying on a 16-node cluster, namely −53.4%
(resp. −41.5%) compared to a centralized solution when ad-

dressing binary (resp. multi-class) classification via 1D-CNN

(resp. LSTM). On the other hand, classification performance

obtained by 2-node deployments are closer to those attainable

by centralized DL implementations (dashed lines). To deepen

the above investigation, we show in Fig. 3 the confusion

matrices pertaining to the (best performing) 1D-CNN on iOS

dataset by investigating the error patterns for N ∈ {2, 8, 16} in

comparison to the centralized case. Confusion matrices show

a general degradation with growing N , with some apps not
recognized in most of the cases, as also confirmed by the

corresponding recall (e.g. 47.50% for N = 16).

Such results witness how the adoption of DL deployments

leveraging the power of BD frameworks may generate sig-

nificant performance loss: though current solutions provide

ready-to-use implementations with interfaces similar to (if not

matching) the centralized counterparts, DL training stage is not
naturally parallelizable, thus resulting in worse classification

results due to reduced training accuracy collectively provided

by workers when operating on smaller dataset portions.

Impact of worker update frequency (F ). In Fig. 4, we

evaluate the three considered dimensions versus worker update

period 1/F (reported in terms of either number or fraction

of epochs), with a range 1
F ∈ [1/139, 90] epochs (i.e. from

one update every mini-batch to one update during the whole

training phase). For brevity and budget constraints, the analysis

focuses on the best performing BD-enabled DL architecture

(i.e. 1D-CNN) trained and tested on the binary FB/FBM

dataset with N = 4 workers. For both WTPE and cost analyses

(Figs. 4a and 4b), we consider as the lower-bound counterparts
the values obtained considering the loosest coupling between

the workers and the master ( 1
F = 90), while for the F-

measure the upper-bound value of the centralized case. As

expected, both WTPE and cost (Figs. 4a–4b) increase with

F . Interestingly, a steep reduction is evident when passing

from one update every single mini-batch to one every 7 mini-

batches (i.e. from 1
F = 1

139 to 1
F = 1

20 epoch) with a −80.3%

decrease. On the other hand, when the update period goes from
1
F = 1

20 to 1
F = 90 the decrease is only −53.2%.

Finally, Fig. 4c shows the classification effectiveness in

terms of F-measure. The best performance is obtained with
1
4 ≤ 1

F ≤ 10 with a significant degradation for 1
F ≤ 1

10
and 1

F ≥ 30. Whilst worse performance is expected when the

exchange of updates is less frequent (right side of Fig. 4c),

this phenomenon is unexpected in the presence of tight

coupling (i.e. 1
F ≤ 1

10 , left side of Fig. 4c). To shed light

on this evidence, we have performed additional experiments

(not shown for brevity) with better-performing worker/master

nodes (D32sv3). Results highlight that in this case the F-

measure obtained with 1
F = 1

7 and 1
F = 1

10 is comparable with

the best-performing case, thus not showing any performance

decrease due to the tight coupling. Nonetheless, the same

performance trend of Fig. 4c is observed for 1
F ≤ 1

20 . This

result suggests that a computational bottleneck exists at the

master, hindering the correct collection of the updates from the

workers, hence resulting in a worse-performing DL model.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We tackled TC of mobile traffic via DL architectures sup-

ported by BD solutions, providing a comprehensive method-

ological evaluation and comparison, pursued along three dif-

ferent (intertwined) dimensions, i.e. training completion time,

costs, and classification performance. Specifically, we de-

signed, deployed, and evaluated TC state-of-art DL networks

for classifying encrypted mobile traffic via BD. In the exper-

imental campaign we adopted the BD platform of a leading

public-cloud service provider (Microsoft Azure) and leveraged

two human-generated mobile and encrypted traffic datasets.

Accordingly, our work provided an in-depth analysis never

achieved so far, producing interesting outcomes and useful

guidelines for harvesting the benefits deriving from the joint

adoption of DL and BD, with specific focus on mobile TC.
In detail, although the adoption of the BD framework

to support DL architectures significantly reduces the overall

training time (with even more significant trends expected in

larger datasets), especially in the case of high paralleliza-

tion, its non-transparent nature has a direct implication on
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DL classification performance. Indeed, the joint use of data

parallelism and federated learning provides a final trained DL

architecture representing a sub-optimal solution to the TC

task, not reaching the performance of a centralized solution

(that takes longer times, but works on the training set as a

whole), with more marked effects in the high-parallelization

case (N = 16 workers in our experiments). Such performance

gap significantly depends also on the worker update frequency

F , and TC “centralized” performance may be approached

only through higher frequency values. Sadly, this inherent

tradeoff leads to higher computational overhead for the master

(viz. more powerful hardware required) and impacts on both

time and cost performance. This precludes a wallclock time

cut proportional to the number of workers, which reflects on

the cost unsuitability, highlighted by a cost-optimal number

of workers. Concluding, the above outcomes highlight the

dependence of BD-enabled DL-based mobile traffic classifiers,

in a non-trivial way, on (a) the degree of parallelization

and (b) the communication frequency of the BD architecture

supporting the training phase of DL-based traffic classifiers.

The present study motivates several research directions:

(i) deployment and validation of advanced BD-enabled

DL-based traffic classifiers, exploiting multimodal data fusion

and adopting more sophisticated DL layers (e.g. inception,

residual connections, etc.); (ii) accelerated exploitation of

massive unsupervised data for transfer learning, granted by

BD solutions; (iii) prototyping of BD-enabled DL architec-

tures able to exploit both model and data parallelism [16];

(iv) stream-based learning implementations [17] of BD-en-

abled DL-based traffic classifiers to account for concept drift.
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