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Abstract—Understanding the evolving characteristics of the
World Wide Web is challenging due to its immense size and
diversity. In this paper, we investigate Web structure and dy-
namics by analyzing over 1 trillion URLs requested during Web
browsing by a 2 million person user panel over a period of 12
months. We begin by examining the lifetime of URLs and find
that in contrast to early studies, the set of URLs visited is highly
dynamic and well-modeled by a gamma distribution. Next, we
analyze URL-traversal patterns and find that browsing behaviors
differ substantially from hyperlink connectivity. One consequence
of this is that the structure of the Web that is derived from
hyperlink connectivity does not extend directly to actual user
behavior. Finally, we consider the commonly used path and query
portions of URLs and highlight their characteristics when used
by different website genres. These semantic differences suggest
that URL structure can broadly classify the kind of resource
that a URL references. Our analyses lead to a set of proposed
enhancements to the URL standard that would improve Web
manageability and transparency and make a step toward the
semantic web.

I. INTRODUCTION

Over the past two and a half decades, the World Wide

Web has been the dominant application for transmission of

rich media on the Internet. Web-based applications such as

search, e-commerce, social networking, and entertainment are

used by billions of people around the world on a daily basis.

However, the elegance and simplicity of essential aspects of the

Web, namely clients running browsers connecting to servers

delivering content via HTTP, belie its vast infrastructure and

complex mechanisms.

Early studies of the Web focused on issues such as hyperlink

structure [1], protocol performance [2], and user behavior [3].

These studies provided a basic framework for understanding the

Web and for improving features, performance and reliability.

Significant changes have taken place since these studies

were conducted, including increased complexity of websites

and browsers, the proliferation of mobile devices, content

delivery networks, cloud-hosted applications, high quality

search engines, online advertising, and social media. The rise

and continuing evolution of these technologies coupled with

the demands imposed by their widespread use strongly suggest

the need for on-going empirical study of Web structure and

use.

Unfortunately, there are significant challenges to assembling

a data set that is sufficient for broad and deep analysis and

modeling of the Web. First, there is a vast number of entities

such as users, publishers, and infrastructure providers that

comprise Web participants. Collecting data from any of these

participants at scale involves a significant effort related to

instrumentation deployment and management. Second, there is

high sensitivity to privacy and new legal requirements such as

GDPR and CCPA ([4], [5]) that preclude the use of certain kinds

of data in research studies. These laws impose strict penalties

for violations. Third is the analytic and modeling challenge of

making sense out of diverse, highly complex data and extracting

meaningful conclusions and parsimonious models that provide

new insights into the evolving characteristics of the Web.

We posit that Uniform Resource Locators (URLs) [6] have

unique utility for studying the Web. This was certainly true

during the initial years of the Web’s evolution, which was a

time when hyperlinks, and by extension the URL, served as

the primary tool by which users navigated the Web. As a result

of this primary use case, user behavior and the Web’s link

structure were intimately connected. One guiding question of

the present study is whether or not this still holds true for the

modern Web, which has undergone a significant transformation

towards increased automation and personalization. URLs are

one of the key features in HTTP requests and are used in a

broad range of applications, including personalized content,

advertisement delivery, content delivery networks, and more. In

addition to base pages, URLs are used to transmit myriad types

of information including a user’s browsing history, geographical

location, and demographic information. Thus the URL serves

two purposes: resource location and message delivery.

In this paper, we present findings of an empirical study of

over 1 trillion URLs requested during Web browsing sessions

from Comscore’s 2M person user panel collected over a

period of 12 months. The Comscore user panel is an opt-in

data collection infrastructure1 that tracks a variety of features

during Web browsing sessions. The goal of our work is to

present results that both relate to prior studies and convey new

characteristics of Web structure and dynamics. While our data

set is compelling in terms of scale and rich information content,

we grappled with how best to achieve these goals in a way that

is novel and provides useful insights. To that end, we focus

on three different analyses.

Our first analysis considers the issue of URL lifetime from

1Comscore is highly sensitive to user privacy issues and follows all industry
best practices for disclosure and data handling. See [7] for details.
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a novel point of view, which to the best of our knowledge

provides a new characterization. We introduce the notion of the

invoked lifetime of a URL, which measures the time between

a URL’s first and last occurrence in a data set. Practically

speaking, this relates to “content interest” dynamics in the Web.

This concept is relevant to a publisher’s editorial decisions

and it can inform Web caching operations. We find that

the distribution of invoked lifetimes is well-approximated

by a parsimonious parametric function closely related to

the probability density function of the gamma distribution.

Using this model, we make the surprising observation that

the expected lifetime of a URL is asymptotically equal to the

time window of observation. In light of prior work [8],[9] that

describe self-similar features of network and Web traffic and

the ubiquity of fat-tailed distributions within network data, it

is also surprising that a classical and “well-behaved” family of

statistical distributions appears at all. This is also interesting

since, within the realm of advertising (e.g., bid requests and

advertisements), a significant volume of URLs in Web traffic

are nonces.

Our second analysis is focused on the issue of Web structure.

In their work studying the structure of the Web, Boldi and

Vigna demonstrate that a directed Web Graph constructed using

intra-page links has a sparse representation [10]. We revisit

this work, but from the perspective of user browsing behavior

rather than page links. Our ansatz (and simplified) assumption

is that a user’s browsing behavior is a connected path within the

Web Graph. If this is true, then a user’s appropriately encoded

browsing behavior should possess key characteristics that Boldi

and Vigna first observed within their Web Graph. Empirically,

we find that this is not the case. Our analysis brings rigor to

the common understanding that users no longer traverse the

Web as they did when these earlier studies were performed.

It supports the notion that much of today’s “Web surfing” is

facilitated by search, recommendations, and so on.

Our third analysis considers the structure inherent in URLs

by comparing the use of path hierarchy against query string (i.e.,
before and after the “?” in URLs) on a variety of sites. We find

that static content is delivered using path-depth structure while

query parameters contain customized content. This path-depth-

versus-query-parameter dichotomy exists even though the two

morphologies are functionally equivalent. This is consistent

with the following observation: in applications where search

and resource discovery are either unnecessary (e.g. advertising)

or managed through some other method (e.g. personalized

recommendation systems on video sites) the URL serves as a

unique identifier and it does not need to reflect the resource’s

content. The heavy use of query strings in many applications is

in stark contrast with historical discussions that envisioned the

URL much as one views a node living within a hierarchical

file system.

We conclude by highlighting two issues that relate to the

URL but are not addressed by the current URL standard. They

are privacy and lexical scope.

URLs were designed to be public documents, and the open

nature of the URL leads to the informed recommendation [11]

that the URL should not contain sensitive information. In spite

of this, we find that many URLs hosted on prominent web

sites include private, sensitive personal information in clear

text.

The URL standard specifies how a user’s credentials can

be incorporated into the URL. However, Chrome, which is

currently the dominant Web browser [12] no longer supports

the credential standard. This change is unlikely to cause

widespread disruption because its use within Comscore panel

web traffic is rare: credentials are managed using alternative

methods. Regardless, sensitive information extends far beyond

usernames and passwords. We report that URLs embed personal

and sensitive information such as financial information, home

addresses, student names, medical search terms and the number

of children in one’s family. Additionally, large corpuses of

URL data that contains this information are routinely bought

and sold through business-to-business transactions that lack

transparency.

Human-readable URLs are still viewed as critical to the

modern Web [13]. Widespread adoption of link shorteners [14]

and efforts that alter the end-user’s relationship with the URL

(e.g., the AMP project [15]) highlight the need to continually

revisit basic assumptions about the URL, the role that the URL

plays in the Web and to understand unanticipated emerging

use-cases that rely on the URL.

II. DATA AND METHODOLOGY

We obtain our data from the Comscore user panel2, whose

participation is voluntary and requires informed consent. The

panel is comprised of over 2 million desktop users who

install software on their computer that monitors the HTTP(S)

traffic that occurs between the panelist’s machine and the

outside world. The purpose of the panel is ultimately to

inform publishers and advertisers about the composition of

their digital audiences. Participants sign up in exchange for

benefits including cash awards, antivirus software, and online

credits. Data collection, storage, and analysis are performed

in accordance with Comscore’s privacy policy [7]. All data

collected is analyzed ex post-facto to remove entries that are

corrupted or associated with invalid or malicious activities.

All analyses presented herein are based on coarse, high-level

aggregations of data.

Panel records include, among other things, HTTP(S) headers

(which contain URLs), response codes, and the names of

processes making the requests. Many of these features are

also available in standard network packet traces, and indeed,

many of the analyses we present below could be accomplished

using network packet traces as the data source.

To review, the URL is a hierarchical sequence of components

defined in [6] as scheme, authority, path, query, and fragment.

The authority component consists of user credentials, hostname

and port number. In Web traffic, credentials are typically

omitted and the port number is determined by the scheme,

2Similar panels are maintained by other commercial entities such as Nielsen,
Hitwise, Compete, etc.
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where port 80 is commonly used for HTTP traffic and port

443 for HTTPS traffic. The host, pathname and query fields

are separated by the first occurrences of “//”,“/” and “?”,

respectively. In our analyses, we tokenize the URL using

standard libraries such as Python’s urllib. The query

parameters of a URL often include inscrutable, nondeterministic

values (e.g., cache breakers) whose purpose is to increase the

uniqueness of the URL. In contrast, the portion of a URL that

contains the domain and path are indicators of more persistent

resources.

Our data span May 2017 and April 2018, inclusive. The

panel typically reports several billion records per day, and

the total number of records used in our analysis is just over

1 trillion. The primary computing platform used for our analysis

is a several-hundred node Spark cluster.

III. RESULTS

A large, rich, longitudinal URL data set offers the opportunity

to develop many insights on the Web. Our selection of analyses

for this paper was motivated by the goal of providing insights

on Web structure and user behavior that revisit prior work and

offer new perspectives.

A. A Robust Parsimonious Lifetime Model

In this section, we show empirically that a simple parametric

function that is closely related to the gamma distribution serves

as a good model of URL lifetime. We consider URL lifetime

from the perspective of client side requests: a URL is considered

“alive” if it is in use by panel participants. This approach stands

in contrast to prior work that defines lifetime in terms of server

response codes [16], [17]. To this end, we define the invoked
lifetime of a URL as the time between a URL’s first appearance

and its last. Our definition of lifetime differs from prior ones in

that our focus is on observed behavioral interest in a URL, as

indicated by an observed HTTP request. This is distinct from

prior work focused on whether a URL successfully resolves.

For the present analysis, we restrict our attention to the

domain and path portions of a URL and disregard query

parameters. Additionally, while our data source includes all

HTTP web requests that are associated with a browser on

a single machine, we will only consider here those requests

generated by a user who manually types a URL in the browser

location bar and the subsequent requests to resources that load

as a result of the top-level request.

Let UN denote URLs observed between May 1, 2017 and

May 1, 2017 + N days. If u ∈ UN is a URL that is initially

observed at time t0 and is last observed at t1, then the invoked

lifetime of u is t1 − t0.

Figure 1 shows (blue) the number of URLs in UN for N =
61, 123, 184, 245, and 304 whose lifetime was l, where 0 <
l < N . The function (orange) is described by

t �→ 2.5× 106 (N − t) e−0.025(N−t)

is also shown. The parameters of this function were found

using an ad hoc binary search strategy. It is noteworthy that

the parameters of the model represented in Figure 1 are held

Fig. 1. The distribution of invoked lifetimes of URLs observed over N days
(blue). The model function g is also shown (orange). The error of the fit in
the bottom axis is ‖d− g‖ / ‖d‖ ≈ 0.08.

fixed for the date ranges shown. More generally, for t > 0,

define

g(t) := g(t;N, c, α, τ) := c (N − t)
α
e−τ(N−t)I[0,N ](t)

The function g is closely related to the pdf of the gamma

distribution with decay rate τ and shape parameter α. Unlike

many visualizations of web measurements, the lines that

represent the data in Figure 1 are remarkably smooth. We

believe smoothness is not an artifact of either measurement or

our processing, but a genuine feature of the data.

Figure 2 shows URL lifetimes for fixed N , but the URLs

in the analysis had volume larger than s = 0, 10, 104 and 105.

The parameters of the fitted g(·;N, c, α, τ) are listed in Table I.

A parameterized model allows additional results about the

observed data to be derived. Consider h(t) := h(t; c, α, τ) :=
ctαe−τtI(0,∞), where c normalizes h so that

∫
h = 1. Then h is

the pdf of a gamma distribution. If X is a random variable with

pdf h having the same decay rate and shape as g of Figure 1,

E(X) = 80. Applying this to that g, the mean invoked lifetime

of a URL in UN is, for large N , about N−80. Asymptotically,

this equals the length of observation!
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Fig. 2. Same as Figure 1, except that N = 335 is fixed and URLs were
observed more than s = 0, 10, 10000, 100000 times. Model parameters appear
in Table I.

TABLE I
DETAILS ABOUT g SHOWN IN FIGURE 2. THE TRANSITION FROM s = 10 TO

s = 10, 000 IS SMOOTH SO INTERMEDIATE VALUES ARE OMITTED.

s N c α τ ‖d− g‖ / ‖d‖
-1 * 2.50× 106 1.00 0.025 0.080
0 335 3.24× 106 0.88 0.02 0.095

10 335 6.70× 106 0.51 0.02 0.059
10,000 335 2.80× 104 −0.10 0.02 0.123

100,000 335 4.50× 103 −0.10 0.02 0.111

The gamma distribution is the maximum entropy probability

distribution subject to the constraint that E(X) and E(logX)
are held fixed. Thus, g may be completely specified using only

these two quantities. We conjecture that the fitted gamma

distribution described above may be derived using a first-

principles analysis that leverages either this fact or else

draws from facts known about gamma processes. Such a

derivation would have explanatory power. The general approach

envisioned is analogous to analyses that relate the Poisson

arrival process to queuing theory and applies the analysis to

explain empirically-observed distributions of queue wait times.

We leave this sort of first-principles analysis for future work.

The URLs that have both large volume and long invoked

lifetime are the most significant. For the popular-and-long-lived

URL population, how is the volume of traffic distributed over

time? This question is addressed by Figure 3. This figure is

based on URLs that were requested at least 100,000 times

during our year of observation. Each axis is associated with a

label, p% and it displays the fraction of URLs that required

at least d days to reach p% of their total volume. To illustrate

this concretely, consider the axis p = 75%. On this axis, it

is shown that a significant fraction of popular-and-long-lived

URLs require about 250 days to reach 75% of their total annual

volume. This low-flat-distribution of volume is interesting in

light of “flash-crowd” events, where the bulk of traffic occurs

during the initial days of the URL’s appearance, and trails off

very quickly.

Fig. 3. Within each axis, the line height displays the fraction of traffic that
required at least d days to reach p% of total volume. The area under each
line sums to 1.

This first look at invoked lifetime, which is well-defined

on longitudinal snapshots of URL data, demonstrates that

it exhibits straightforward distributional characteristics. The

invoked lifetime of a URL is relevant for infrastructure

management and caching. URL lifetimes also serve as a proxy

measure of URL churn, where shorter lifetimes indicate greater

dynamism and complexity. Finally, a slightly more accurate

model would include t = 0 in the domain. Such functions

have the form t �→ dNδ0(t)+ g(t), where dN is the volume of

URLs with 0-day invoked lifetime and δ0 is supported at 0.

B. Revisiting the Sparse Web Graph

In this analysis, we address the question: how relevant is the

Web Graph to users’ browsing behavior in general? This was

addressed in 2004 by Boldi and Vigna (BV) in [10] who showed

empirically that the Web Graph, which is derived from page

link structure, has a sparse representation. The efficiency of the

BV representation is based on the observation that URLs on

pages that link to each other are often lexicographically close.

Our hypothesis is that, since that time, user habits, technology

and the Web itself have change dramatically, and as a result, the

characteristics that were originally observed have also changed.

To test this, we revisit the original analysis, but from the

vantage point of a user’s browsing behavior rather than page

link structure. The early Web was dominated by static content,

and the early model of navigation was consequently that users

traversed the Web via hyperlinks. More formally, a user’s
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browsing activity could be represented as a connected path

within the larger Web Graph. However, search, recommenda-

tions, bookmarks, URL shorteners, ephemeral URLs, social

media, etc., have changed how people navigate the Web.

Before describing our analysis, we sketch the key results of

BV. The Web Graph is a directed graph where nodes are URLs

and edges are defined by hyperlinks on pages. If u, v ∈ U are

URLs (i.e., nodes in the graph) and v appears on the page

that u represents, then there is a directed edge in the graph,

u → v. In the BV analysis, each URL node in U is mapped to

an integer according to its placement in the lexicographically

ordered list of URLs in U . Let #u denote this integer. A key

finding in BV find is the “gaps” between hyperlinks follow a

power law. More specifically,

|{#u−#v = j : u, v ∈ U , u → v}| = O
(
|j|−1.21

)
.

The consequence of this is that the Web Graph, despite

having millions of nodes and billions of edges, has a sparse

representation and it can be efficiently represented.

We now describe our analysis. As before, we order all

URLs in U lexicographically, and let #u denote the index

of u ∈ U in this list. Let i index a user, let
(
ui
0, u

i
1, u

i
2, . . .

)
denote the time-ordered set of URLs in U that user i visited,

and let the gaps in a user’s browsing trace be the sequence,(
#ui

k −#ui
k+1 : k ≥ 0

)
. Using BV’s result that pages that

link to each other are close lexicographically, if users navigate

primarily by following hyperlinks, then we expect the distri-

bution of gaps in user browsing behavior, in the aggregate,

to be distributed according to a power law. However, if users

generally navigate using some other method, for example with

search or via links shared on social media, then we should not

expect to see such a distribution.

Figure 4 shows the scatterplot of URL gaps appearing in

the initial 5000 URLs visited by a random sample of 100,000

distinct panelists over one day. To compare this against the

results of BV, also shown is the power law model that BV

describe. Figure 5 displays the same analysis, except the

domains are restricted to the top 500 domains reported by

Moz [18]. To summarize, neither representation suggests that

browsing behavior exhibits a power-law distribution. A linear

estimator provides a better fit, but the fit is quite loose and the

efficiency that was achieved by Boldi and Vigna is unlikely to

be achieved here. Consequently, the early mental model of a

user traversing the Web Graph by following a connected path

does not apply. One might also expect that the widespread

deployment of standard website templates (e.g., WordPress) and

development frameworks might also lead to small lexicographic

gaps in browsing behavior. This does not appear to be the case.

This result helps to form a new basis for understanding a

typical Web user’s browsing behavior. The canonical model

of a Web user, viz. the “Random Surfer,” concerns the actions

of a hypothetical user who traverses the Web primarily by

following hyperlinks between pages [19]. However, our analysis

demonstrates that this is no longer an accurate representation

of modern browsing. This shift in behavior also highlights the

power that search engines and social media platforms have to

Fig. 4. The analysis of URL gaps within web browser traffic with log-log
(top) and linear-linear (bottom) scales. The BV power-law model (black) and
a least square linear fit (red) are indicated. The latter has slope and intercept
−8.7× 10−10 and 9.0× 10−4, respectively.

Fig. 5. The same analysis as appears in Figure 4, except that domains appear in
the Moz top 500 list. The slope and intercept are −3.9×10−9 and 7.0×10−4,
respectively.

influence the content that modern users are exposed to, and

by extension, what information users are most likely going to

access.

C. On Query Length and Path Depth

A typical web page renders in a browser via dozens, often

hundreds of individual HTTP(S) requests that are issued to

many different web servers, and most of this activity occurs

out of sight of the user. Therefore, the record of a user’s Web

browsing session, whether assembled from packet traces or

through in-browser methods will include this unseen activity.

Accurate labeling of a collection of such HTTP requests into

the “foreground” or the “background” categories is essential

to an accurate reporting on publisher page views, for example.
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Fig. 6. The distribution of path-length versus query-array-length across site class. Within a class, let dpq denote the fraction of URLs with path-depth p and
query-array-length q. The radius of each disc in the scatterplot is proportional to dpq . The marginal distributions, namely

∑
q dpq and

∑
p dpq are represented

as histograms.

An heuristic approach to this sort of categorization may rely

on curated keyword lists and lists of well-known domains

that are associated with particular roles. It is generally, albeit

informally, recognized that the use of path hierarchy and query

fields within the URL depend upon the nature of the resource

requested. In this section, our aim is to add rigor and quantify

the conventional wisdom about how URLs are structured to

serve different purposes. Specifically, we report that different

classes of Web sites structure their URLs on the path-depth-

versus-query-length plane in distinct ways.

The URL-to-resource relationship is that of a key-value pair:

the characters within a URL are irrelevant as long as the URL

properly serves as an identifier of its corresponding resource.

After the domain name, the main features of the URL are its

path and query fields. Web sites typically use the path portion

to organize resources into a hierarchy, much as filesystems do.

In contrast, the query parameters form an unordered list of

key-value pairs.

One risk associated with a deep path hierarchy is that

the labels within the hierarchy grow irrelevant or become a

burden to maintain over time. This was recognized early in the

development of the Web [20]. In contrast, a site that structures

its URLs exclusively using query parameters has an extensible

and flexible structure to work within while maintaining a

manageable hierarchy. Site developers are free to structure

their URLs, and thereby organize the resources that live on

their sites, in any manner that they wish.

Figure 6 concerns the URLs associated with four categories

of web site: social media, advertising, news, and URLs whose

domain matches *.{edu,mil,gov}. The domains used to

represent each category were manually selected from a handful

of the most visited sites in the category. Each scatterplot

displays path depth against the number of query fields of the

URLs that were observed in panel data for each category. The

sites with relatively static content (e.g., *.{edu,mil,gov})

exhibit a preference for path-centric URLs. Conversely, services

that customize content for users such as social media and

advertising exhibit a preference for query parameters. The

mean number of query field parameters and path depths are

TABLE II
MEAN VALUES OF PATH-DEPTH AND QUERY-LENGTH FOR EACH CLASS OF

WEB SERVICE.

Ads Social News *.{edu,mil,gov}
μpath depth 1.3 1.2 2.9 1.3
μquery length 7.8 6.5 3.0 1.5

displayed in Table II.

Query strings, through the inclusion of ad auction bid prices,

referrer strings, and other information, provide insight into

Web infrastructure. One issue that arises in especially complex

strings is the inclusion of URLs as values of query parameters

in other URLs. When embedding like this occurs, accurately

parsing a URL becomes more complicated, or even impossible.

To conclude this section, our analysis shows that it is possible

to make nontrivial inferences about the nature of an HTTP

request by relying on very coarse metrics, viz., path depth and

query length. In other words, the form of a URL reflects the

use and purpose of the URL.

IV. PRIVACY AND LEXICAL SCOPE

We now discuss two issues that concern URL use within the

modern Web: privacy and lexical scope. We argue that neither

is effectively addressed by the URL standard [6].

The modern Web does not generally leverage the URL

standard’s proposed method to pass credentials from client

to server. One reflection of this is that the dominant web

browser (i.e., Chrome) no longer implements this part of the

standard [12]. Indeed, credentials are usually passed from

client to server in a different manner and in a way that does

not utilize the URL at all. Several reasons not to include

sensitive information in the URL are that URLs are stored in

browser history, they get stored in web server logs, and URLs

are routinely passed around as values of query parameters in

other URLs. The historical context for this is that URLs are

envisioned as public documents.

Despite this, we find that personal and sensitive information

are routinely included in URLs. To support this statement, we
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report on a very simple set of ad-hoc analyses performed on a

1-day snapshot of desktop browser request data. To illustrate

the flavor of the analyses performed, one analysis searched the

corpus for literal strings such as “username=”, “password=”

and a handful of similar variants. Multiple instances of well-

known brands pass credential login information using clear

text that is embedded in URL query strings. We list the nature

of other sensitive information that was found in this snapshot:

• the number of children in one’s family (hotel rental)

• financial account status and credentials (financial site)

• location information in the form of latitude and longitude

• referrer information with medical search terms (ad request)

The diverse nature of information suggests that an automated

detection methodology is unlikely to be comprehensive. It

can be very challenging to prevent the leakage of sensitive

information, and the cost in time and effort to reengineer a

solution can be very high [21]. As already mentioned, large

bodies of URL data are routinely bought and sold in a very

opaque manner. Based on our experience within the industry,

we report that data vendors do attempt to limit the sharing of

personally identifiable information (PII) but in practice, these

efforts are incomplete and as a result, this sort of information

can be shared widely. Effective removal of sensitive information

from the URL has no broadly-accepted solution, and no

established norms exist to signal compliance with current (e.g.,
GDPR and CCPA) or proposed policies (e.g., [22]). In contrast

to the failed DNT flag [23], which is now unsupported by at

least one major browser [24], the emerging legal environment

incentivizes market participants to actively embrace solutions

that restrict the transmission of private information.

The second issue, namely lexical scope, arises in the

following common scenario: if a URL has been properly “%”-

encoded (per the standard), it becomes admissible to include

as a value of another URL’s query field. When this happens

several times, the provenance of information can be impossible

to trace accurately. As demostrated in the above analyses, long

and complex URLs are now quite common, and many of these

URLs contain URLs.

To address both these issues, we now state two proposals:

1) Privacy A syntax to label sensitive information within the

URL. Examples of such information include IP address,

geolocation coordinates, unique identifiers, human names,

referrer, etc. Explicit privacy labels would provide

visibility for industry participants and users on what

sensitive information is being included in URLs. This is

important because many users on the Web unknowingly

and freely leak sensitive personal information that has

monetary value to third parties. Such information is

passed around by third-party data providers who have

little to no visibility to the end user and face low risk

of a consequence for sharing or monetizing this type of

information. Included in this class of data is historical

content consumption, search terms on medical conditions,

and interpersonal relationships.

If information were tagged within URL as “private” in

a standardized manner, it would allow web servers to

automatically scrub this information, it would allow

browsers to quarantine this information, it would provide

a trivial technical means for data providers in the

marketplace to meet contractual guarantees and meet

public normative expectations that information is not

carelessly passed around, and it could provide non-

technical policymakers a meaningful handle that can

be used to discuss the management and transmission of

private information.

2) Lexical Scope A syntax that formalizes initial and

terminal tokens for query field parameters. This addresses

problems that arise when a URL is passed as query

parameter within another URL. In practice, URL encod-

ing is inconsistently applied, and as a result it can be

impossible to know which namespace “owns” a particular

query parameter. A well-defined lexical scope would

resolve the problem of assigning provenance to query

parameters. In panelist data, we observe that as URLs

are passed along from one entity to the next via the URL,

the flat structure of the query parameters grows complex.

Inevitably, every party that touches a URL and passes

it along to another party appends their own metadata to

the URL. This complicates the task of untangling the

sequence of events that built up a compound URL.

V. RELATED WORK

The structure of the Web Graph, the manner in which users

traverse the graph and how information resides within the

graph have each received a great deal of attention. An early

investigation into the Web Graph’s structure finds that the

distribution of node degrees follows a power-law [25]. The

authors of that work use URL lifetime as one component of

their first principles analysis. In [26] the authors report that,

although the graph’s node degree distribution has a heavy tail,

it may not be Zipfian.

A misalignment between hyperlink structure and user behav-

ior was noted as early as 1997 [27]. More current research [28]

reports link structure may no longer be useful for understanding

Web use. The results in Section III-B strengthen this argument.

Other early efforts to understand Web browsing behavior

include [29]. This work was quickly applied to problems

such as Web caching [30], protocol analysis [31] and server

analysis [32]. Demographic traits such as gender, income and

ethnicity have also been associated with browsing patterns [33].

Recent studies have focused on tracking and privacy issues [34].

In [35], [36], hyperlink structure is used to infer the authority

of information on the Web. Information provenance and track-

ing misinformation across the Web is still being investigated

[37]. Early studies of the Graph informed our understanding

of how hyperlinks connect information. They also influenced

crawling strategies and PageRank for Google [38], [19].

In addition to the DNT flag, which was already discussed,

other (failed) initiatives to protect or restrict the general user’s

privacy include a Google-created plugin for Chrome that allows

a user to opt out of Google Analytics [39] and a Google-created
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plugin that allows a user to opt out of [40] interest-based ads.

As of this writing, neither plugin has seen wide adoption and

neither has been updated since 2014.

VI. SUMMARY AND CONCLUSIONS

In this paper, we report results of an initial analysis of over

1 trillion URLs requested by a 2 million person user panel

over a period of 12 months. The goal of this work is to report

findings that provide perspective on prior studies and reveal

new characteristics of Web structure and dynamics. We analyze

URL lifetime using a metric we call invoked lifetime and find

that URLs in today’s Web are dynamic and well-modeled by

a gamma distribution. We also analyze URL-traversal patterns

and find that there are distinct differences between browsing

behaviors and link connectivity, which indicates significant

differences from early studies of the Web. Next, we divide the

URL into its path and the query components and examine their

differences in each based on website genres. We conclude that

URL structure can broadly classify the kind of resource that

a URL references, which provides a measure of rigor to the

conventional wisdom that in spite of functional equivalence,

paths and query strings are applied differently across application

domains. Finally, our examination of URLs leads to a series

of suggested enhancements to the URL standard that could

benefit the broader Web community.
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